@article{SIGMA_2016_12_a99,
author = {Yoh Tanimoto},
title = {Bound {State} {Operators} and {Wedge-Locality} in {Integrable} {Quantum} {Field} {Theories}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a99/}
}
Yoh Tanimoto. Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a99/
[1] Alazzawi S., Deformations of quantum field theories and the construction of interacting models, Ph.D. Thesis, Universität Wien, 2014, arXiv: 1503.00897
[2] Bischoff M., Tanimoto Y., “Construction of wedge-local nets of observables through Longo–Witten endomorphisms. II”, Comm. Math. Phys., 317 (2013), 667–695, arXiv: 1111.1671 | DOI | MR | Zbl
[3] Borchers H.-J., Buchholz D., Schroer B., “Polarization-free generators and the $S$-matrix”, Comm. Math. Phys., 219 (2001), 125–140, arXiv: hep-th/0003243 | DOI | MR | Zbl
[4] Buchholz D., Lechner G., “Modular nuclearity and localization”, Ann. Henri Poincaré, 5 (2004), 1065–1080, arXiv: math-ph/0402072 | DOI | MR | Zbl
[5] Buchholz D., Lechner G., Summers S. J., “Warped convolutions, Rieffel deformations and the construction of quantum field theories”, Comm. Math. Phys., 304 (2011), 95–123, arXiv: 1005.2656 | DOI | MR | Zbl
[6] Cadamuro D., Tanimoto Y., “Wedge-local fields in integrable models with bound states”, Comm. Math. Phys., 340 (2015), 661–697, arXiv: 1502.01313 | DOI | MR | Zbl
[7] Cadamuro D., Tanimoto Y., “Wedge-local fields in integrable models with bound states II: Diagonal $S$-matrix”, Ann. Henri Poincaré (to appear) , arXiv: 1601.07092 | DOI | MR
[8] Cadamuro D., Tanimoto Y., Modular nuclearity and the inverse scattering problem for integrable QFT with bound states, in preparation
[9] Cadamuro D., Tanimoto Y., Wedge-local fields in the deformed sine-Gordon model, in preparation
[10] Carpi S., Kawahigashi Y., Longo R., Weiner M., “From vertex operator algebras to conformal nets and back”, Mem. Amer. Math. Soc. (to appear) , arXiv: 1503.01260
[11] Driessler W., Fröhlich J., “The reconstruction of local observable algebras from the Euclidean Green's functions of relativistic quantum field theory”, Ann. Inst. H. Poincaré Sect. A, 27 (1977), 221–236 | MR | Zbl
[12] Dybalski W., Tanimoto Y., “Asymptotic completeness in a class of massless relativistic quantum field theories”, Comm. Math. Phys., 305 (2011), 427–440, arXiv: 1006.5430 | DOI | MR | Zbl
[13] Epstein H., “Some analytic properties of scattering amplitudes in quantum field theory”, Particle Symmetries and Axiomatic Field Theory, v. 1, Axiomatic Field Theory, Gordon and Breach, New York–London–Paris, 1966, 1–128
[14] Faddeev L. D., Volkov A. Yu., J. Phys. A: Math. Theor., 41 (2008), 194008, Discrete evolution for the zero modes of the quantum Liouville model, 12 pp., arXiv: 0803.0230 | DOI | MR
[15] Glimm J., Jaffe A., Quantum physics. A functional integral point of view, 2nd ed., Springer-Verlag, New York, 1987 | DOI | MR
[16] Haag R., Local quantum physics. Fields, particles, algebras, Texts and Monographs in Physics, 2nd ed., Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl
[17] Konrady J., “Almost positive perturbations of positive selfadjoint operators”, Comm. Math. Phys., 22 (1971), 295–300 | DOI | MR | Zbl
[18] Lechner G., “Polarization-free quantum fields and interaction”, Lett. Math. Phys., 64 (2003), 137–154, arXiv: hep-th/0303062 | DOI | MR | Zbl
[19] Lechner G., “Construction of quantum field theories with factorizing $S$-matrices”, Comm. Math. Phys., 277 (2008), 821–860, arXiv: math-ph/0601022 | DOI | MR | Zbl
[20] Lechner G., “Deformations of quantum field theories and integrable models”, Comm. Math. Phys., 312 (2012), 265–302, arXiv: 1104.1948 | DOI | MR | Zbl
[21] Lechner G., “Algebraic constructive quantum field theory: integrable models and deformation techniques”, Advances in Algebraic Quantum Field Theory, Math. Phys. Stud., Springer, Cham, 2015, 397–448, arXiv: 1503.03822 | DOI | MR | Zbl
[22] Lechner G., Schützenhofer C., “Towards an operator-algebraic construction of integrable global gauge theories”, Ann. Henri Poincaré, 15 (2014), 645–678, arXiv: 1208.2366 | DOI | MR | Zbl
[23] Longo R., Witten E., “An algebraic construction of boundary quantum field theory”, Comm. Math. Phys., 303 (2011), 213–232, arXiv: 1004.0616 | DOI | MR | Zbl
[24] Mund J., “An algebraic Jost–Schroer theorem for massive theories”, Comm. Math. Phys., 315 (2012), 445–464, arXiv: 1012.1454 | DOI | MR | Zbl
[25] Nelson E., “Analytic vectors”, Ann. of Math., 70 (1959), 572–615 | DOI | MR | Zbl
[26] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York–London, 1975 | MR | Zbl
[27] Rudin W., Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987 | MR | Zbl
[28] Rudin W., Functional analysis, International Series in Pure and Applied Mathematics, 2nd ed., McGraw-Hill, Inc., New York, 1991 | MR | Zbl
[29] Schmüdgen K., “On commuting unbounded selfadjoint operators. I”, Acta Sci. Math. (Szeged), 47 (1984), 131–146 | MR | Zbl
[30] Schmüdgen K., Unbounded self-adjoint operators on Hilbert space, Graduate Texts in Mathematics, 265, Springer, Dordrecht, 2012 | DOI | MR | Zbl
[31] Schroer B., “Modular wedge localization and the $d=1+1$ formfactor program”, Ann. Physics, 275 (1999), 190–223, arXiv: hep-th/9712124 | DOI | MR | Zbl
[32] Stein E. M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, Princeton, N.J., 1971 | MR
[33] Tanimoto Y., “Construction of wedge-local nets of observables through Longo–Witten endomorphisms”, Comm. Math. Phys., 314 (2012), 443–469, arXiv: 1107.2629 | DOI | MR | Zbl
[34] Tanimoto Y., “Construction of two-dimensional quantum field models through Longo–Witten endomorphisms”, Forum Math. Sigma, 2 (2014), e7, 31 pp., arXiv: 1301.6090 | DOI | MR | Zbl
[35] Tanimoto Y., Self-adjointness of bound state operators in integrable quantum field theory, arXiv: 1508.06402