Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study $\mathfrak{gl}(2|1)$ symmetric integrable models solvable by the nested algebraic Bethe ansatz. Using explicit formulas for the Bethe vectors we derive the actions of the monodromy matrix entries onto these vectors. We show that the result of these actions is a finite linear combination of Bethe vectors. The obtained formulas open a way for studying scalar products of Bethe vectors.
Keywords: algebraic Bethe ansatz; superalgebras; scalar product of Bethe vectors.
@article{SIGMA_2016_12_a98,
     author = {Arthur Hutsalyuk and Andrii Liashyk and Stanislav Z. Pakuliak and Eric Ragoucy and Nikita A. Slavnov},
     title = {Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a98/}
}
TY  - JOUR
AU  - Arthur Hutsalyuk
AU  - Andrii Liashyk
AU  - Stanislav Z. Pakuliak
AU  - Eric Ragoucy
AU  - Nikita A. Slavnov
TI  - Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a98/
LA  - en
ID  - SIGMA_2016_12_a98
ER  - 
%0 Journal Article
%A Arthur Hutsalyuk
%A Andrii Liashyk
%A Stanislav Z. Pakuliak
%A Eric Ragoucy
%A Nikita A. Slavnov
%T Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a98/
%G en
%F SIGMA_2016_12_a98
Arthur Hutsalyuk; Andrii Liashyk; Stanislav Z. Pakuliak; Eric Ragoucy; Nikita A. Slavnov. Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a98/

[1] Anderson P. W., “Singular forward scattering in the $2D$ Hubbard model and a renormalized Bethe ansatz ground state”, Phys. Rev. Lett., 65 (1990), 2306–2308 | DOI

[2] Bedürftig G., Frahm H., “Thermodynamics of an integrable model for electrons with correlated hopping”, J. Phys. A: Math. Gen., 28 (1995), 4453–4468, arXiv: cond-mat/9504103 | DOI | MR | Zbl

[3] Belliard S., Pakuliak S., Ragoucy E., “Universal Bethe ansatz and scalar products of Bethe vectors”, SIGMA, 6 (2010), 094, 22 pp., arXiv: 1012.1455 | MR | Zbl

[4] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., “The algebraic Bethe ansatz for scalar products in SU(3)-invariant integrable models”, J. Stat. Mech. Theory Exp., 2012 (2012), P10017, 25 pp., arXiv: 1207.0956 | DOI | MR

[5] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., “Highest coefficient of scalar products in SU(3)-invariant integrable models”, J. Stat. Mech. Theory Exp., 2012 (2012), P09003, 17 pp., arXiv: 1206.4931 | MR

[6] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., “Bethe vectors of GL(3)-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013 (2013), P02020, 24 pp., arXiv: 1210.0768 | MR

[7] Belliard S., Pakuliak S., Ragoucy E., Slavnov N. A., “Form factors in SU(3)-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013 (2013), P04033, 16 pp., arXiv: 1211.3968 | MR

[8] Belliard S., Ragoucy E., “The nested Bethe ansatz for 'all' closed spin chains”, J. Phys. A: Math. Theor., 41 (2008), 295202, 33 pp., arXiv: 0804.2822 | DOI | MR | Zbl

[9] Bracken A. J., Gould M. D., Links J. R., Zhang Y.-Z., “A new supersymmetric and exactly solvable model of correlated electrons”, Phys. Rev. Lett., 74 (1995), 2768–2771, arXiv: cond-mat/9410026 | DOI

[10] Caux J.-S., Calabrese P., Slavnov N. A., “One-particle dynamical correlations in the one-dimensional Bose gas”, J. Stat. Mech. Theory Exp., 2007 (2007), P01008, 20 pp., arXiv: cond-mat/0611321 | DOI

[11] Caux J.-S., Maillet J. M., “Computation of dynamical correlation functions of Heisenberg chains in a magnetic field”, Phys. Rev. Lett., 95 (2005), 077201, 3 pp., arXiv: cond-mat/0502365 | DOI

[12] Drinfel'd V. G., “Hopf algebras and the quantum Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254–258 | MR

[13] Enriquez B., Khoroshkin S., Pakuliak S., “Weight functions and Drinfeld currents”, Comm. Math. Phys., 276 (2007), 691–725, arXiv: math.QA/0610398 | DOI | MR | Zbl

[14] Essler F. H. L., Korepin V. E., “Higher conservation laws and algebraic Bethe Ansätze for the supersymmetric $t-J$ model”, Phys. Rev. B, 46 (1992), 9147–9162 | DOI

[15] Faddeev L. D., Sklyanin E. K., Takhtajan L. A., “Quantum inverse problem. I”, Theoret. Math. Phys., 40 (1979), 688–706 | DOI | MR

[16] Faddeev L. D., Takhtajan L. A., “Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model”, J. Sov. Math., 24 (1984), 241–267 | DOI | Zbl

[17] Foerster A., Karowski M., “Algebraic properties of the Bethe ansatz for an $\mathrm{spl}(2, 1)$-supersymmetric $t-J$ model”, Nuclear Phys. B, 396 (1993), 611–638 | DOI | MR

[18] Förster D., “Staggered spin and statistics in the supersymmetric $t-J$ model”, Phys. Rev. Lett., 63 (1989), 2140–2143 | DOI

[19] Frappat L., Khoroshkin S., Pakuliak S., Ragoucy É., “Bethe ansatz for the universal weight function”, Ann. Henri Poincaré, 10 (2009), 513–548, arXiv: 0810.3135 | DOI | MR | Zbl

[20] Göhmann F., Klümper A., Seel A., “Integral representations for correlation functions of the $XXZ$ chain at finite temperature”, J. Phys. A: Math. Gen., 37 (2004), 7625–7651, arXiv: hep-th/0405089 | DOI | MR | Zbl

[21] Göhmann F., Klümper A., Seel A., “Integral representation of the density matrix of the $XXZ$ chain at finite temperatures”, J. Phys. A: Math. Gen., 38 (2005), 1833–1841, arXiv: cond-mat/0412062 | DOI | MR | Zbl

[22] Jimbo M., “A $q$-difference analogue of $U(\mathfrak{g})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl

[23] Khoroshkin S., Pakuliak S., “A computation of universal weight function for quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$”, J. Math. Kyoto Univ., 48 (2008), 277–321, arXiv: 0711.2819 | MR | Zbl

[24] Kitanine N., Kozlowski K., Maillet J. M., Slavnov N. A., Terras V., “Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions”, J. Stat. Mech. Theory Exp., 2009 (2009), P04003, 66 pp., arXiv: 0808.0227 | DOI | MR

[25] Kitanine N., Kozlowski K., Maillet J. M., Slavnov N. A., Terras V., “A form factor approach to the asymptotic behavior of correlation functions”, J. Stat. Mech. Theory Exp., 2011 (2011), P12010, 27 pp., arXiv: 1110.0803 | DOI

[26] Kitanine N., Maillet J. M., Slavnov N. A., Terras V., “Spin-spin correlation functions of the $XXZ-\frac12$ Heisenberg chain in a magnetic field”, Nuclear Phys. B, 641 (2002), 487–518, arXiv: hep-th/0201045 | DOI | MR | Zbl

[27] Kitanine N., Maillet J. M., Terras V., “Form factors of the $XXZ$ Heisenberg $\mathrm{spin}-\frac12$ finite chain”, Nuclear Phys. B, 554 (1999), 647–678, arXiv: math-ph/9807020 | DOI | MR | Zbl

[28] Kitanine N., Maillet J. M., Terras V., “Correlation functions of the $XXZ$ Heisenberg $\mathrm{spin}-\frac12$ chain in a magnetic field”, Nuclear Phys. B, 567 (2000), 554–582, arXiv: math-ph/9907019 | DOI | MR | Zbl

[29] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[30] Korepin V. E., Izergin A. G., Essler F. H. L., Uglov D. B., “Correlation function of the $\mathrm{spin}-\frac12XXX$ antiferromagnet”, Phys. Lett. A, 190 (1994), 182–184, arXiv: cond-mat/9403066 | DOI | MR | Zbl

[31] Kulish P. P., “Classical and quantum inverse problem method and generalized Bethe ansatz”, Phys. D, 3 (1981), 246–257 | DOI | MR | Zbl

[32] Kulish P. P., Reshetikhin N. Yu., “Diagonalisation of $\mathrm{GL}(N)$ invariant transfer matrices and quantum $N$-wave system (Lee model)”, J. Phys. A: Math. Gen., 16 (1983), L591–L596 | DOI | MR | Zbl

[33] Kulish P. P., Reshetikhin N. Yu., “On $\mathrm{GL}_3$-invariant solutions of the Yang–Baxter equation and associated quantum systems”, J. Sov. Math., 34 (1986), 1948–1971 | DOI

[34] Kulish P. P., Sklyanin E. K., “Solutions of the Yang–Baxter equation”, J. Sov. Math., 19 (1982), 1596–1620 | DOI | Zbl

[35] Pakuliak S., Ragoucy E., Slavnov N. A., “Scalar products in models with the $\mathrm{GL(3)}$ trigonometric $R$-matrix: general case”, Theoret. Math. Phys., 180 (2014), 795–814, arXiv: 1401.4355 | DOI | MR | Zbl

[36] Pakuliak S., Ragoucy E., Slavnov N. A., “Scalar products in models with a $\mathrm{GL(3)}$ trigonometric $R$-matrix: highest coefficient”, Theoret. Math. Phys., 178 (2014), 314–335, arXiv: 1311.3500 | DOI | MR | Zbl

[37] Pakuliak S., Ragoucy E., Slavnov N. A., “Form factors of local operators in a one-dimensional two-component Bose gas”, J. Phys. A: Math. Theor., 48 (2015), 435001, 21 pp., arXiv: 1503.00546 | DOI | MR | Zbl

[38] Pakuliak S., Ragoucy E., Slavnov N. A., “$\mathrm{GL(3)}$-based quantum integrable composite models. II. Form factors of local operators”, SIGMA, 11 (2015), 064, 18 pp., arXiv: 1502.01966 | MR | Zbl

[39] Pakuliak S., Ragoucy E., Slavnov N. A., “Zero modes method and form factors in quantum integrable models”, Nuclear Phys. B, 893 (2015), 459–481, arXiv: 1412.6037 | DOI | MR

[40] Pakuliak S., Ragoucy E., Slavnov N. A., Bethe vectors for models based on the super-Yangian $Y(\mathfrak{gl}(m|n))$, arXiv: 1604.02311

[41] Pereira R. G., Sirker J., Caux J.-S., Hagemans R., Maillet J. M., White S. R., Affleck I., “The dynamical spin structure factor for the anisotropic $\mathrm{spin}-1/2$ Heisenberg chain”, Phys. Rev. Lett., 96 (2006), 257202, 4 pp., arXiv: cond-mat/0603681 | DOI

[42] Pereira R. G., Sirker J., Caux J.-S., Hagemans R., Maillet J. M., White S. R., Affleck I., “Dynamical structure factor at small $q$ for the $XXZ$ $\mathrm{spin}-1/2$ chain”, J. Stat. Mech. Theory Exp., 2007 (2007), P08022, 64 pp., arXiv: 0706.4327 | DOI | MR

[43] Schlottmann P., “Integrable narrow-band model with possible relevance to heavy fermion systems”, Phys. Rev. B, 36 (1987), 5177–5185 | DOI

[44] Seel A., Bhattacharyya T., Göhmann F., Klümper A., “A note on the $\mathrm{spin}-\frac12XXZ$ chain concerning its relation to the Bose gas”, J. Stat. Mech. Theory Exp., 2007 (2007), P08030, 10 pp., arXiv: 0705.3569 | DOI | MR

[45] Slavnov N. A., “Calculation of scalar products of wave functions and form-factors in the framework of the algebraic Bethe ansatz”, Theoret. Math. Phys., 79 (1989), 502–508 | DOI | MR

[46] Slavnov N. A., “Scalar products in $\mathrm{GL(3)}$-based models with trigonometric $R$-matrix. Determinant representation”, J. Stat. Mech. Theory Exp., 2015 (2015), P03019, 25 pp., arXiv: 1501.06253 | DOI | MR

[47] Slavnov N. A., Multiple commutation relations in the models with $\mathfrak{gl}(2|1)$ symmetry, arXiv: 1604.05343

[48] Sutherland B., “Further results for the many-body problem in one dimension”, Phys. Rev. Lett., 20 (1968), 98–100 | DOI

[49] Sutherland B., “A general model for multicomponent quantum systems”, Phys. Rev. B, 12 (1975), 3795–3805 | DOI

[50] Tarasov V., Varchenko A., “Combinatorial formulae for nested Bethe vectors”, SIGMA, 9 (2013), 048, 28 pp., arXiv: math.QA/0702277 | MR | Zbl

[51] Wheeler M., “Multiple integral formulae for the scalar product of on-shell and off-shell Bethe vectors in $\mathrm{SU(3)}$-invariant models”, Nuclear Phys. B, 875 (2013), 186–212, arXiv: 1306.0552 | DOI | MR | Zbl

[52] Wheeler M., “Scalar products in generalized models with $\mathrm{SU(3)}$-symmetry”, Comm. Math. Phys., 327 (2014), 737–777, arXiv: 1204.2089 | DOI | MR | Zbl

[53] Yang C. N., “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19 (1967), 1312–1315 | DOI | MR | Zbl

[54] Zhang F. C., Rice T. M., “Effective Hamiltonian for the superconducting Cu oxides”, Phys. Rev. B, 37 (1988), 3759–3761 | DOI