@article{SIGMA_2016_12_a96,
author = {Olivier Gabriel and Moritz Weber},
title = {Fixed {Point} {Algebras} for {Easy} {Quantum} {Groups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a96/}
}
Olivier Gabriel; Moritz Weber. Fixed Point Algebras for Easy Quantum Groups. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a96/
[1] Banica T., “Théorie des représentations du groupe quantique compact libre ${\rm O}(n)$”, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 241–244, arXiv: math.QA/9806063 | MR | Zbl
[2] Banica T., “Symmetries of a generic coaction”, Math. Ann., 314 (1999), 763–780, arXiv: math.QA/9811060 | DOI | MR | Zbl
[3] Banica T., Belinschi S. T., Capitaine M., Collins B., “Free Bessel laws”, Canad. J. Math., 63 (2011), 3–37, arXiv: 0710.5931 | DOI | MR | Zbl
[4] Banica T., Bichon J., Collins B., “The hyperoctahedral quantum group”, J. Ramanujan Math. Soc., 22 (2007), 345–384, arXiv: math.RT/0701859 | MR | Zbl
[5] Banica T., Speicher R., “Liberation of orthogonal Lie groups”, Adv. Math., 222 (2009), 1461–1501, arXiv: 0808.2628 | DOI | MR | Zbl
[6] Banica T., Vergnioux R., “Fusion rules for quantum reflection groups”, J. Noncommut. Geom., 3 (2009), 327–359, arXiv: 0805.4801 | DOI | MR | Zbl
[7] Baum P. F., De Commer K., Hajac P. M., Free actions of compact quantum group on unital ${C}^*$-algebras, arXiv: 1304.2812
[8] Baumgärtel H., Lledó F., “Duality of compact groups and Hilbert $C^*$-systems for $C^*$-algebras with a nontrivial center”, Internat. J. Math., 15 (2004), 759–812, arXiv: math.OA/0311170 | DOI | MR | Zbl
[9] Bichon J., “Free wreath product by the quantum permutation group”, Algebr. Represent. Theory, 7 (2004), 343–362, arXiv: math.QA/0107029 | DOI | MR | Zbl
[10] Carey A. L., Paolucci A., Zhang R. B., “Quantum group actions on the Cuntz algebra”, Ann. Henri Poincaré, 1 (2000), 1097–1122, arXiv: q-alg/9705020 | DOI | MR | Zbl
[11] Cuntz J., “Simple $C^*$-algebras generated by isometries”, Comm. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl
[12] Cuntz J., “Regular actions of Hopf algebras on the $C^*$-algebra generated by a Hilbert space”, Operator Algebras, Mathematical Physics, and Low-Dimensional Topology (Istanbul, 1991), Res. Notes Math., 5, A K Peters, Wellesley, MA, 1993, 87–100 | MR | Zbl
[13] D{a̧}browski L., Hadfield T., Hajac P. M., “Equivariant join and fusion of noncommutative algebras”, SIGMA, 11 (2015), 082, 7 pp., arXiv: 1407.6020 | DOI | MR
[14] De Commer K., Yamashita M., “A construction of finite index $C^*$-algebra inclusions from free actions of compact quantum groups”, Publ. Res. Inst. Math. Sci., 49 (2013), 709–735, arXiv: 1201.4022 | DOI | MR | Zbl
[15] Doplicher S., Roberts J. E., “Duals of compact Lie groups realized in the Cuntz algebras and their actions on $C^*$-algebras”, J. Funct. Anal., 74 (1987), 96–120 | DOI | MR | Zbl
[16] Doplicher S., Roberts J. E., “Endomorphisms of $C^*$-algebras, cross products and duality for compact groups”, Ann. of Math., 130 (1989), 75–119 | DOI | MR | Zbl
[17] Ellwood D. A., “A new characterisation of principal actions”, J. Funct. Anal., 173 (2000), 49–60 | DOI | MR | Zbl
[18] Freslon A., Weber M., “On the representation theory of partition (easy) quantum groups”, J. Reine Angew. Math. (to appear) , arXiv: 1308.6390 | DOI | MR
[19] Gabriel O., “Fixed points of compact quantum groups actions on Cuntz algebras”, Ann. Henri Poincaré, 15 (2014), 1013–1036, arXiv: 1210.5630 | DOI | MR | Zbl
[20] Gelaki S., Nikshych D., “Nilpotent fusion categories”, Adv. Math., 217 (2008), 1053–1071, arXiv: math.QA/0610726 | DOI | MR | Zbl
[21] Hajac P. M., Krähmer U., Matthes R., Zieliński B., “Piecewise principal comodule algebras”, J. Noncommut. Geom., 5 (2011), 591–614, arXiv: 0707.1344 | DOI | MR | Zbl
[22] Kashina Y., Sommerhäuser Y., Zhu Y., On higher Frobenius–Schur indicators, Mem. Amer. Math. Soc., 181, 2006, viii+65 pp., arXiv: math.RA/0311199 | DOI | MR
[23] Kirchberg E., The classification of purely infinite $C^*$-algebras using Kasparov theory, Preprint, 1994
[24] Kirchberg E., Phillips N. C., “Embedding of exact $C^*$-algebras in the Cuntz algebra ${\mathcal O}_2$”, J. Reine Angew. Math., 525 (2000), 17–53, arXiv: funct-an/9712002 | DOI | MR | Zbl
[25] Konishi Y., Nagisa M., Watatani Y., “Some remarks on actions of compact matrix quantum groups on $C^*$-algebras”, Pacific J. Math., 153 (1992), 119–127 | DOI | MR
[26] Kreimer H. F., Takeuchi M., “Hopf algebras and Galois extensions of an algebra”, Indiana Univ. Math. J., 30 (1981), 675–692 | DOI | MR | Zbl
[27] Marciniak M., “Actions of compact quantum groups on $C^*$-algebras”, Proc. Amer. Math. Soc., 126 (1998), 607–616 | DOI | MR | Zbl
[28] Montgomery S., “Hopf Galois theory: a survey”, New Topological Contexts for Galois Theory and Algebraic Geometry, BIRS 2008, Geom. Topol. Monogr., 16, Geom. Topol. Publ., Coventry, 2009, 367–400 | DOI | MR | Zbl
[29] Müger M., “On the center of a compact group”, Int. Math. Res. Not., 2004 (2004), 2751–2756 | DOI | MR
[30] Neshveyev S., Tuset L., Compact quantum groups and their representation categories, Cours Spécialisés, 20, Société Mathématique de France, Paris, 2013 http://folk.uio.no/sergeyn/papers/CQGRC.pdf | MR | Zbl
[31] Paolucci A., “Coactions of Hopf algebras on Cuntz algebras and their fixed point algebras”, Proc. Amer. Math. Soc., 125 (1997), 1033–1042 | DOI | MR | Zbl
[32] Pinzari C., “Simple $C^*$-algebras associated with compact groups and $K$-theory”, J. Funct. Anal., 123 (1994), 46–58 | DOI | MR | Zbl
[33] Pinzari C., Roberts J. E., “A duality theorem for ergodic actions of compact quantum groups on $C^*$-algebras”, Comm. Math. Phys., 277 (2008), 385–421, arXiv: math.OA/0607188 | DOI | MR | Zbl
[34] Pinzari C., Roberts J. E., “A rigidity result for extensions of braided tensor $C^*$-categories derived from compact matrix quantum groups”, Comm. Math. Phys., 306 (2011), 647–662, arXiv: 1007.4480 | DOI | MR | Zbl
[35] Rørdam M., “Classification of nuclear, simple $C^*$-algebras”, Classification of Nuclear $C^*$-algebras. Entropy in Operator Algebras, Encyclopaedia Math. Sci., 126, Springer, Berlin, 2002, 1–145 | DOI | MR
[36] Tarrago P., Weber M., The classification of tensor categories of two-colored noncrossing partitions, arXiv: 1509.00988
[37] Tarrago P., Weber M., “Unitary easy quantum groups: the free case and the group case”, Int. Math. Res. Not. (to appear) , arXiv: 1512.00195 | DOI
[38] Tikuisis A., White S., Winter W., “Quasidiagonality of nuclear $C^*$-algebras”, Ann. of Math. (to appear) , arXiv: 1509.08318
[39] Wang S., “Free products of compact quantum groups”, Comm. Math. Phys., 167 (1995), 671–692 | DOI | MR | Zbl
[40] Wang S., “Quantum symmetry groups of finite spaces”, Comm. Math. Phys., 195 (1998), 195–211, arXiv: math.OA/9807091 | DOI | MR | Zbl
[41] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl
[42] Woronowicz S. L., “Twisted ${\rm SU}(2)$ group. An example of a noncommutative differential calculus”, Publ. Res. Inst. Math. Sci., 23 (1987), 117–181 | DOI | MR | Zbl
[43] Woronowicz S. L., “Tannaka–Krein duality for compact matrix pseudogroups. Twisted ${\rm SU}(N)$ groups”, Invent. Math., 93 (1988), 35–76 | DOI | MR | Zbl
[44] Woronowicz S. L., “Compact quantum groups”, Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl