On Harmonic Analysis Operators in Laguerre–Dunkl and Laguerre-Symmetrized Settings
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study several fundamental harmonic analysis operators in the multi-dimensional context of the Dunkl harmonic oscillator and the underlying group of reflections isomorphic to $\mathbb{Z}_2^d$. Noteworthy, we admit negative values of the multiplicity functions. Our investigations include maximal operators, $g$-functions, Lusin area integrals, Riesz transforms and multipliers of Laplace and Laplace–Stieltjes type. By means of the general Calderón–Zygmund theory we prove that these operators are bounded on weighted $L^p$ spaces, $1 p \infty$, and from weighted $L^1$ to weighted weak $L^1$. We also obtain similar results for analogous set of operators in the closely related multi-dimensional Laguerre-symmetrized framework. The latter emerges from a symmetrization procedure proposed recently by the first two authors. As a by-product of the main developments we get some new results in the multi-dimensional Laguerre function setting of convolution type.
Keywords: Dunkl harmonic oscillator; generalized Hermite functions; negative multiplicity function; Laguerre expansions of convolution type; Bessel harmonic oscillator; Laguerre–Dunkl expansions; Laguerre-symmetrized expansions; heat semigroup; Poisson semigroup; maximal operator; Riesz transform; $g$-function; spectral multiplier; area integral; Calderón–Zygmund operator.
@article{SIGMA_2016_12_a95,
     author = {Adam Nowak and Krzysztof Stempak and Tomasz Z. Szarek},
     title = {On {Harmonic} {Analysis} {Operators} in {Laguerre{\textendash}Dunkl} {and~Laguerre-Symmetrized} {Settings}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a95/}
}
TY  - JOUR
AU  - Adam Nowak
AU  - Krzysztof Stempak
AU  - Tomasz Z. Szarek
TI  - On Harmonic Analysis Operators in Laguerre–Dunkl and Laguerre-Symmetrized Settings
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a95/
LA  - en
ID  - SIGMA_2016_12_a95
ER  - 
%0 Journal Article
%A Adam Nowak
%A Krzysztof Stempak
%A Tomasz Z. Szarek
%T On Harmonic Analysis Operators in Laguerre–Dunkl and Laguerre-Symmetrized Settings
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a95/
%G en
%F SIGMA_2016_12_a95
Adam Nowak; Krzysztof Stempak; Tomasz Z. Szarek. On Harmonic Analysis Operators in Laguerre–Dunkl and Laguerre-Symmetrized Settings. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a95/

[1] Álvarez López J. A., Calaza M., “Embedding theorems for the Dunkl harmonic oscillator on the line”, SIGMA, 10 (2014), 004, 16 pp., arXiv: 1301.4196 | DOI | MR

[2] Álvarez López J. A., Calaza M., “A perturbation of the Dunkl harmonic oscillator on the line”, SIGMA, 11 (2015), 059, 33 pp., arXiv: 1412.4655 | DOI | MR

[3] Amri B., “Riesz transforms for Dunkl Hermite expansions”, J. Math. Anal. Appl., 423 (2015), 646–659, arXiv: 1201.1209 | DOI | MR | Zbl

[4] Amri B., Sifi M., “Riesz transforms for Dunkl transform”, Ann. Math. Blaise Pascal, 19 (2012), 247–262, arXiv: 1105.1427 | DOI | MR | Zbl

[5] Amri B., Sifi M., “Singular integral operators in Dunkl setting”, J. Lie Theory, 22 (2012), 723–739 | MR | Zbl

[6] Amri B., Tayari H., “The $L^p$-continuity of imaginary powers of the Dunkl harmonic oscillator”, Indian J. Pure Appl. Math., 46 (2015), 239–249 | DOI | MR

[7] Ben Salem N., Samaali T., “Hilbert transforms associated with Dunkl–Hermite polynomials”, SIGMA, 5 (2009), 037, 17 pp., arXiv: 0903.4369 | DOI | MR | Zbl

[8] Betancor J. J., Castro A. J., Nowak A., “Calderón–Zygmund operators in the Bessel setting”, Monatsh. Math., 167 (2012), 375–403, arXiv: 1012.5638 | DOI | MR | Zbl

[9] Betancor J. J., Fariña J. C., Rodríguez-Mesa L., Testoni R., Torrea J. L., “Fractional square functions and potential spaces”, J. Math. Anal. Appl., 386 (2012), 487–504 | DOI | MR | Zbl

[10] Betancor J. J., Fariña J. C., Rodríguez-Mesa L., Testoni R., Torrea J. L., “Fractional square functions and potential spaces, II”, Acta Math. Sin. (Engl. Ser.), 31 (2015), 1759–1774 | DOI | MR | Zbl

[11] Betancor J. J., Molina S. M., Rodríguez-Mesa L., “Area Littlewood–Paley functions associated with Hermite and Laguerre operators”, Potential Anal., 34 (2011), 345–369, arXiv: 1001.3814 | DOI | MR | Zbl

[12] Boggarapu P., Roncal L., Thangavelu S., “Mixed norm estimates for the Cesàro means associated with Dunkl–Hermite expansions”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1410.2162

[13] Boggarapu P., Thangavelu S., “Mixed norm estimates for the Riesz transforms associated to Dunkl harmonic oscillators”, Ann. Math. Blaise Pascal, 22 (2015), 89–120, arXiv: 1407.1644 | DOI | MR | Zbl

[14] Castro A. J., Szarek T. Z., “On fundamental harmonic analysis operators in certain Dunkl and Bessel settings”, J. Math. Anal. Appl., 412 (2014), 943–963, arXiv: 1304.2904 | DOI | MR | Zbl

[15] Christ M., Lectures on singular integral operators, CBMS Regional Conference Series in Mathematics, 77, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl

[16] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[17] Duoandikoetxea J., Fourier analysis, Graduate Studies in Mathematics, 29, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[18] Forzani L., Sasso E., Scotto R., “Maximal operators associated with generalized Hermite polynomial and function expansions”, Rev. Un. Mat. Argentina, 54 (2013), 83–107 | MR | Zbl

[19] Grafakos L., Modern Fourier analysis, Graduate Texts in Mathematics, 250, 3rd ed., Springer, New York, 2014 | DOI | MR | Zbl

[20] Harboure E., de Rosa L., Segovia C., Torrea J. L., “$L^p$-dimension free boundedness for Riesz transforms associated to Hermite functions”, Math. Ann., 328 (2004), 653–682 | DOI | MR | Zbl

[21] Johnson W. P., “The curious history of Faà di Bruno's formula”, Amer. Math. Monthly, 109 (2002), 217–234 | DOI | MR | Zbl

[22] Langowski B., “Harmonic analysis operators related to symmetrized Jacobi expansions”, Acta Math. Hungar., 140 (2013), 248–292, arXiv: 1210.1342 | DOI | MR | Zbl

[23] Langowski B., “On potential spaces related to Jacobi expansions”, J. Math. Anal. Appl., 432 (2015), 374–397, arXiv: 1410.6635 | DOI | MR | Zbl

[24] Langowski B., “Potential and Sobolev spaces related to symmetrized Jacobi expansions”, SIGMA, 11 (2015), 073, 17 pp., arXiv: 1505.01653 | DOI | MR | Zbl

[25] Langowski B., “Harmonic analysis operators related to symmetrized Jacobi expansions for all admissible parameters”, Acta Math. Hungar., 150 (2016), 49–82, arXiv: 1512.08948 | DOI | MR

[26] Nefzi W., “Higher order Riesz transforms for the Dunkl harmonic oscillator”, Taiwanese J. Math., 19 (2015), 567–583 | DOI | MR

[27] Nowak A., Stempak K., “$L^2$-theory of Riesz transforms for orthogonal expansions”, J. Fourier Anal. Appl., 12 (2006), 675–711 | DOI | MR | Zbl

[28] Nowak A., Stempak K., “Riesz transforms for multi-dimensional Laguerre function expansions”, Adv. Math., 215 (2007), 642–678 | DOI | MR | Zbl

[29] Nowak A., Stempak K., “Imaginary powers of the Dunkl harmonic oscillator”, SIGMA, 5 (2009), 016, 12 pp., arXiv: 0902.1958 | DOI | MR | Zbl

[30] Nowak A., Stempak K., “Riesz transforms for the Dunkl harmonic oscillator”, Math. Z., 262 (2009), 539–556, arXiv: 0802.0474 | DOI | MR | Zbl

[31] Nowak A., Stempak K., “Negative powers of Laguerre operators”, Canad. J. Math., 64 (2012), 183–216, arXiv: 0912.0038 | DOI | MR | Zbl

[32] Nowak A., Stempak K., “A symmetrized conjugacy scheme for orthogonal expansions”, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 427–443, arXiv: 1009.1767 | DOI | MR | Zbl

[33] Nowak A., Stempak K., “Sharp estimates for potential operators associated with Laguerre and Dunkl–Laguerre expansions”, Potential Anal., 44 (2016), 109–136, arXiv: 1402.2522 | DOI | MR | Zbl

[34] Nowak A., Szarek T. Z., “Calderón–Zygmund operators related to Laguerre function expansions of convolution type”, J. Math. Anal. Appl., 388 (2012), 801–816 | DOI | MR | Zbl

[35] Rösler M., “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135, arXiv: math.CA/0210366 | DOI | MR

[36] Rubio de Francia J. L., Ruiz F. J., Torrea J. L., “Calderón–Zygmund theory for operator-valued kernels”, Adv. Math., 62 (1986), 7–48 | DOI | MR | Zbl

[37] Ruiz F. J., Torrea J. L., “Vector-valued Calderón–Zygmund theory and Carleson measures on spaces of homogeneous nature”, Studia Math., 88, 1988, 221–243 | MR | Zbl

[38] Sasso E., “Functional calculus for the Laguerre operator”, Math. Z., 249 (2005), 683–711 | DOI | MR | Zbl

[39] Segovia C., Wheeden R. L., “On certain fractional area integrals”, J. Math. Mech., 19 (1969), 247–262 | MR | Zbl

[40] Stempak K., Torrea J. L., “On $g$-functions for Hermite function expansions”, Acta Math. Hungar., 109 (2005), 99–125 | DOI | MR | Zbl

[41] Stempak K., Torrea J. L., “Higher Riesz transforms and imaginary powers associated to the harmonic oscillator”, Acta Math. Hungar., 111 (2006), 43–64 | DOI | MR | Zbl

[42] Szarek T., “Littlewood–Paley–Stein type square functions based on Laguerre semigroups”, Acta Math. Hungar., 131 (2011), 59–109, arXiv: 1001.3579 | DOI | MR

[43] Szarek T. Z., “Multipliers of Laplace transform type in certain Dunkl and Laguerre settings”, Bull. Aust. Math. Soc., 85 (2012), 177–190, arXiv: 1101.4139 | DOI | MR | Zbl

[44] Szarek T. Z., “On Lusin's area integrals and $g$-functions in certain Dunkl and Laguerre settings”, Math. Nachr., 285 (2012), 1517–1542, arXiv: 1011.0898 | DOI | MR | Zbl

[45] Thangavelu S., Lectures on Hermite and Laguerre expansions, Mathematical Notes, 42, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl

[46] Wróbel B., “Multivariate spectral multipliers for the Dunkl transform and the Dunkl harmonic oscillator”, Forum Math., 27 (2015), 2301–2322 | DOI | MR