@article{SIGMA_2016_12_a90,
author = {Mikhail B. Sheftel and Devrim Yazici},
title = {Recursion {Operators} and {Tri-Hamiltonian} {Structure} of the {First} {Heavenly} {Equation} of {Pleba\'nski}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a90/}
}
TY - JOUR AU - Mikhail B. Sheftel AU - Devrim Yazici TI - Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a90/ LA - en ID - SIGMA_2016_12_a90 ER -
%0 Journal Article %A Mikhail B. Sheftel %A Devrim Yazici %T Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a90/ %G en %F SIGMA_2016_12_a90
Mikhail B. Sheftel; Devrim Yazici. Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a90/
[1] Antonowicz M., Fordy A. P., “Coupled KdV equations with multi-Hamiltonian structures”, Phys. D, 28 (1987), 345–357 | DOI | MR | Zbl
[2] Antonowicz M., Fordy A. P., “Coupled Harry Dym equations with multi-Hamiltonian structures”, J. Phys. A: Math. Gen., 21 (1988), L269–L275 | DOI | MR | Zbl
[3] Antonowicz M., Fordy A. P., “Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems”, Comm. Math. Phys., 124 (1989), 465–486 | DOI | MR | Zbl
[4] De Sole A., Kac V. G., Nonlocal Hamiltonian structures and applications to the theory of integrable systems I, arXiv: 1210.1688
[5] Dirac P. A. M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, 2, Belfer Graduate School of Science, New York, 1967 | MR
[6] Doubrov B., Ferapontov E. V., “On the integrability of symplectic Monge–Ampère equations”, J. Geom. Phys., 60 (2010), 1604–1616, arXiv: 0910.3407 | DOI | MR | Zbl
[7] Ferapontov E. V., “Differential geometry of nonlocal Hamiltonian operators of hydrodynamic type”, Funct. Anal. Appl., 25 (1991), 195–204 | DOI | MR | Zbl
[8] Ferapontov E. V., “Nonlocal matrix Hamiltonian operators, differential geometry and applications”, Theoret. Math. Phys., 91 (1992), 642–649 | DOI | MR | Zbl
[9] Fuchssteiner B., Fokas A. S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981), 47–66 | DOI | MR | Zbl
[10] Krasil'shchik I. S., Verbovetsky A. M., Vitolo R., “A unified approach to computation of integrable structures”, Acta Appl. Math., 120 (2012), 199–218, arXiv: 1110.4560 | DOI | MR | Zbl
[11] Kupershmidt B. A., “Mathematics of dispersive water waves”, Comm. Math. Phys., 99 (1985), 51–73 | DOI | MR | Zbl
[12] Liu S.-Q., Zhang Y., Jacobi structures of evolutionary partial differential equations, arXiv: 0910.2085 | MR
[13] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[14] Magri F., “A geometrical approach to the nonlinear solvable equations”, Nonlinear Evolution Equations and Dynamical Systems, Proc. Meeting (Univ. Lecce, Lecce, 1979), Lecture Notes in Phys., 120, eds. M. Boiti, F. Pempinelli, G. Soliani, Springer, Berlin–New York, 1980, 233–263 | DOI | MR
[15] Malykh A. A., Nutku Y., Sheftel M. B., “Partner symmetries of the complex Monge–Ampère equation yield hyper-Kähler metrics without continuous symmetries”, J. Phys. A: Math. Gen., 36 (2003), 10023–10037, arXiv: math-ph/0305037 | DOI | MR | Zbl
[16] Malykh A. A., Sheftel M. B., “Recursions of symmetry orbits and reduction without reduction”, SIGMA, 7 (2011), 043, 13 pp., arXiv: 1005.0153 | DOI | MR | Zbl
[17] Mokhov O. I., “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russ. Math. Surv., 53 (1998), 515–622 | DOI | MR | Zbl
[18] Mokhov O. I., “Nonlocal Hamiltonian operators of hydrodynamic type with flat metrics, integrable hierarchies, and associativity equations”, Funct. Anal. Appl., 40 (2006), 11–23, arXiv: math.DG/0406292 | DOI | MR | Zbl
[19] Neyzi F., Nutku Y., Sheftel M. B., “Multi-Hamiltonian structure of Plebanski's second heavenly equation”, J. Phys. A: Math. Gen., 38 (2005), 8473–8485, arXiv: nlin.SI/0505030 | DOI | MR | Zbl
[20] Nutku Y., Sheftel M. B., Kalayci J., Yaz{\i}cı D., “Self-dual gravity is completely integrable”, J. Phys. A: Math. Theor., 41 (2008), 395206, 13 pp., arXiv: 0802.2203 | DOI | MR | Zbl
[21] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR | Zbl
[22] Olver P. J., “Nonlocal symmetries and ghosts”, New Trends in Integrability and Partial Solvability, NATO Sci. Ser. II Math. Phys. Chem., 132, Kluwer Acad. Publ., Dordrecht, 2004, 199–215 | DOI | MR | Zbl
[23] Olver P. J., Poisson structures and integrability, Talk given at Institut des Hautes Etudes Scientifiques, France, 2010, http://www.math.umn.edu/\allowbreakõlver/t_/poisson.pdf
[24] Olver P. J., Private communication, 2016
[25] Olver P. J., Sanders J. A., Wang J. P., “Ghost symmetries”, J. Nonlinear Math. Phys., 9:1 (2002), 164–172 | DOI | MR
[26] Plebański J. F., “Some solutions of complex Einstein equations”, J. Math. Phys., 16 (1975), 2395–2402 | DOI | MR
[27] Sergyeyev A., “Weakly nonlocal Hamiltonian structures: Lie derivative and compatibility”, SIGMA, 3 (2007), 062, 14 pp., arXiv: math-ph/0612048 | DOI | MR | Zbl
[28] Sergyeyev A., Recursion operators for multidimensional integrable systems, arXiv: 1501.01955
[29] Sheftel M. B., “Recursions”, CRC Handbook of Lie Group Analysis of Differential Equations, v. 3, New Trends in Theoretical Developments and Computational Methods, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 1996, 91–137 | MR
[30] Sheftel M. B., Malykh A. A., “On classification of second-order PDEs possessing partner symmetries”, J. Phys. A: Math. Theor., 42 (2009), 395202, 20 pp., arXiv: 0904.2909 | DOI | MR | Zbl
[31] Sheftel M. B., Malykh A. A., “Partner symmetries, group foliation and ASD Ricci-flat metrics without Killing vectors”, SIGMA, 9 (2013), 075, 21 pp., arXiv: 1306.3195 | DOI | MR | Zbl
[32] Sheftel M. B., Malykh A. A., Yaz{\i}cı D., Recursion operators and bi-Hamiltonian structure of the general heavenly equation, arXiv: 1510.03666
[33] Sheftel M. B., Yaz{\i}cı D., “Bi-Hamiltonian representation, symmetries and integrals of mixed heavenly and Husain systems”, J. Nonlinear Math. Phys., 17 (2010), 453–484, arXiv: 0904.3981 | DOI | MR | Zbl
[34] Yaz{\i}cı D., “Generalization of bi-Hamiltonian systems in $(3+1)$ dimension, possessing partner symmetries”, J. Geom. Phys., 101 (2016), 11–18 | DOI | MR | Zbl