A Duflo Star Product for Poisson Groups
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a finite-dimensional Poisson algebraic, Lie or formal group. We show that the center of the quantization of $G$ provided by an Etingof–Kazhdan functor is isomorphic as an algebra to the Poisson center of the algebra of functions on $G$. This recovers and generalizes Duflo's theorem which gives an isomorphism between the center of the enveloping algebra of a finite-dimensional Lie algebra $\mathfrak{a}$ and the subalgebra of ad-invariant in the symmetric algebra of $\mathfrak{a}$. As our proof relies on Etingof–Kazhdan construction it ultimately depends on the existence of Drinfeld associators, but otherwise it is a fairly simple application of graphical calculus. This shed some lights on Alekseev–Torossian proof of the Kashiwara–Vergne conjecture, and on the relation observed by Bar-Natan–Le–Thurston between the Duflo isomorphism and the Kontsevich integral of the unknot.
Keywords: quantum groups; knot theory; Duflo isomorphism.
@article{SIGMA_2016_12_a87,
     author = {Adrien Brochier},
     title = {A {Duflo} {Star} {Product} for {Poisson} {Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a87/}
}
TY  - JOUR
AU  - Adrien Brochier
TI  - A Duflo Star Product for Poisson Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a87/
LA  - en
ID  - SIGMA_2016_12_a87
ER  - 
%0 Journal Article
%A Adrien Brochier
%T A Duflo Star Product for Poisson Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a87/
%G en
%F SIGMA_2016_12_a87
Adrien Brochier. A Duflo Star Product for Poisson Groups. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a87/

[1] Alekseev A., Enriquez B., Torossian C., “Drinfeld associators, braid groups and explicit solutions of the Kashiwara–Vergne equations”, Publ. Math. Inst. Hautes Études Sci., 2010, 143–189, arXiv: 0903.4067 | DOI | MR | Zbl

[2] Alekseev A., Torossian C., “The Kashiwara–Vergne conjecture and Drinfeld's associators”, Ann. of Math., 175 (2012), 415–463, arXiv: 0802.4300 | DOI | MR | Zbl

[3] Bar-Natan D., Le T. T. Q., Thurston D. P., “Two applications of elementary knot theory to Lie algebras and Vassiliev invariants”, Geom. Topol., 7 (2003), 1–31, arXiv: math.QA/0204311 | DOI | MR | Zbl

[4] Cartier P., “Construction combinatoire des invariants de Vassiliev–Kontsevich des nœuds”, R.C.P. 25 (Strasbourg, 1992–1993), Les rencontres physiciens-mathematiciens de Strasbourg, 45 (French) ; Prépubl. Inst. Rech. Math. Av., No 1993/42, Univ. Louis Pasteur, Strasbourg, 1993, 10 pp. | MR | Zbl

[5] Cattaneo A. S., Felder G., Tomassini L., “From local to global deformation quantization of Poisson manifolds”, Duke Math. J., 115 (2002), 329–352, arXiv: math.QA/0012228 | DOI | MR | Zbl

[6] Drinfeld V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR

[7] Drinfeld V. G., “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1989), 1419–1457 | MR

[8] Drinfeld V. G., “On quasitriangular quasi-Hopf algebras and on a group that is closely connected with ${\rm Gal}(\overlineQ/Q)$”, Leningrad Math. J., 2 (1990), 829–860 | MR

[9] Duflo M., “Opérateurs différentiels bi-invariants sur un groupe de Lie”, Ann. Sci. École Norm. Sup. (4), 10 (1977), 265–288 | MR | Zbl

[10] Enriquez B., Halbout G., “Quantization of quasi-Lie bialgebras”, J. Amer. Math. Soc., 23 (2010), 611–653, arXiv: 0804.0496 | DOI | MR | Zbl

[11] Etingof P., Kazhdan D., “Quantization of Lie bialgebras. I”, Selecta Math. (N.S.), 2 (1996), 1–41, arXiv: q-alg/9506005 | DOI | MR | Zbl

[12] Kassel C., Turaev V., “Chord diagram invariants of tangles and graphs”, Duke Math. J., 92 (1998), 497–552 | DOI | MR | Zbl

[13] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66 (2003), 157–216, arXiv: q-alg/9709040 | DOI | MR | Zbl

[14] Le T. T. Q., Murakami J., “Representation of the category of tangles by Kontsevich's iterated integral”, Comm. Math. Phys., 168 (1995), 535–562 | DOI | MR | Zbl

[15] Le T. T. Q., Murakami J., “The universal Vassiliev–Kontsevich invariant for framed oriented links”, Compositio Math., 102 (1996), 41–64 | MR | Zbl

[16] Le T. T. Q., Murakami J., “Parallel version of the universal Vassiliev–Kontsevich invariant”, J. Pure Appl. Algebra, 121 (1997), 271–291 | DOI | MR | Zbl

[17] Manchon D., Torossian C., “Cohomologie tangente et cup-produit pour la quantification de Kontsevich”, Ann. Math. Blaise Pascal, 10 (2003), 75–106, arXiv: math.QA/0106205 | DOI | MR | Zbl

[18] Semenov-Tian-Shansky M. A., “Dressing transformations and Poisson group actions”, Publ. Res. Inst. Math. Sci., 21 (1985), 1237–1260 | DOI | MR

[19] Ševera P., “Quantization of Lie bialgebras revisited”, Selecta Math. (N.S.), 22 (2016), 1563–1581, arXiv: 1401.6164 | DOI | MR

[20] Tamarkin D. E., Another proof of M. Kontsevich formality theorem, arXiv: math.QA/9803025

[21] Tamarkin D. E., Operadic proof of M. Kontsevich's formality theorem, Ph.D. Thesis, The Pennsylvania State University, 1999