@article{SIGMA_2016_12_a86,
author = {Sandra Carillo and Mauro Lo Schiavo and Cornelia Schiebold},
title = {B\"acklund {Transformations} and {Non-Abelian} {Nonlinear} {Evolution} {Equations:} a {Novel} {B\"acklund} {Chart}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a86/}
}
TY - JOUR AU - Sandra Carillo AU - Mauro Lo Schiavo AU - Cornelia Schiebold TI - Bäcklund Transformations and Non-Abelian Nonlinear Evolution Equations: a Novel Bäcklund Chart JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a86/ LA - en ID - SIGMA_2016_12_a86 ER -
%0 Journal Article %A Sandra Carillo %A Mauro Lo Schiavo %A Cornelia Schiebold %T Bäcklund Transformations and Non-Abelian Nonlinear Evolution Equations: a Novel Bäcklund Chart %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a86/ %G en %F SIGMA_2016_12_a86
Sandra Carillo; Mauro Lo Schiavo; Cornelia Schiebold. Bäcklund Transformations and Non-Abelian Nonlinear Evolution Equations: a Novel Bäcklund Chart. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a86/
[1] Aden H., Carl B., “On realizations of solutions of the KdV equation by determinants on operator ideals”, J. Math. Phys., 37 (1996), 1833–1857 | DOI | MR | Zbl
[2] Athorne C., Fordy A., “Generalised KdV and MKdV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20 (1987), 1377–1386 | DOI | MR | Zbl
[3] Bateman H., “The lift and drag functions for an elastic fluid in two-dimensional irrotational flow”, Proc. Nat. Acad. Sci. USA, 24 (1938), 246–251 | DOI
[4] Bateman H., “The transformation of partial differential equations”, Quart. Appl. Math., 1 (1944), 281–296 | MR
[5] Calogero F., Degasperis A., “Nonlinear evolution equations solvable by the inverse spectral transform. II”, Nuovo Cimento B, 39 (1977), 1–54 | DOI | MR
[6] Calogero F., Degasperis A., Spectral transform and solitons, v. I, Studies in Mathematics and its Applications, 13, Tools to solve and investigate nonlinear evolution equations, North-Holland Publishing Co., Amsterdam–New York, 1982 | MR | Zbl
[7] Carillo S., “Nonlinear evolution equations: Bäcklund transformations and Bäcklund charts”, Acta Appl. Math., 122 (2012), 93–106 | DOI | MR | Zbl
[8] Carillo S., Fuchssteiner B., “The abundant symmetry structure of hierarchies of nonlinear equations obtained by reciprocal links”, J. Math. Phys., 30 (1989), 1606–1613 | DOI | MR | Zbl
[9] Carillo S., Lo Schiavo M., Schiebold C., Recursion operators admitted by non-Abelian Burgers equations: some remarks, arXiv: 1606.07270
[10] Carillo S., Rogers C., “Bäcklund charts for the Caudrey–Dodd–Gibbon and Kaup–Kupershmidt hierarchies”, Nonlinear Evolutions (Balaruc-les-Bains, 1987), World Sci. Publ., Teaneck, NJ, 1988, 57–73 | MR
[11] Carillo S., Schiebold C., “Noncommutative Korteweg–de Vries and modified Korteweg–de Vries hierarchies via recursion methods”, J. Math. Phys., 50 (2009), 073510, 14 pp. | DOI | MR | Zbl
[12] Carillo S., Schiebold C., “A non-commutative operator-hierarchy of Burgers equations and Bäcklund transformations”, Applied and Industrial Mathematics in Italy III, Ser. Adv. Math. Appl. Sci., 82, World Sci. Publ., Hackensack, NJ, 2010, 175–185 | DOI | MR | Zbl
[13] Carillo S., Schiebold C., “Matrix Korteweg–de Vries and modified Korteweg–de Vries hierarchies: noncommutative soliton solutions”, J. Math. Phys., 52 (2011), 053507, 21 pp. | DOI | MR | Zbl
[14] Carillo S., Schiebold C., “On the recursion operator for the noncommutative Burgers hierarchy”, J. Nonlinear Math. Phys., 19 (2012), 1250003, 11 pp. | DOI | MR | Zbl
[15] Carl B., Schiebold C., “Nonlinear equations in soliton physics and operator ideals”, Nonlinearity, 12 (1999), 333–364 | DOI | MR | Zbl
[16] Carl B., Schiebold C., “Ein direkter Ansatz zur Untersuchung von Solitonengleichungen”, Jahresber. Deutsch. Math.-Verein., 102 (2000), 102–148 | MR | Zbl
[17] Cole J. D., “On a quasi-linear parabolic equation occurring in aerodynamics”, Quart. Appl. Math., 9 (1951), 225–236 | MR | Zbl
[18] Depireux D. A., Schiff J., “On UrKdV and UrKP”, Lett. Math. Phys., 33 (1995), 99–111, arXiv: solv-int/9402004 | DOI | MR | Zbl
[19] Fokas A. S., Fuchssteiner B., “Bäcklund transformations for hereditary symmetries”, Nonlinear Anal., 5 (1981), 423–432 | DOI | MR | Zbl
[20] Fuchssteiner B., “Application of hereditary symmetries to nonlinear evolution equations”, Nonlinear Anal., 3 (1979), 849–862 | DOI | MR | Zbl
[21] Fuchssteiner B., “The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems”, Progr. Theoret. Phys., 68 (1982), 1082–1104 | DOI | MR | Zbl
[22] Fuchssteiner B., “Solitons in interaction”, Progr. Theoret. Phys., 78 (1987), 1022–1050 | DOI | MR
[23] Fuchssteiner B., Carillo S., “Soliton structure versus singularity analysis: third-order completely integrable nonlinear differential equations in $1+1$-dimensions”, Phys. A, 154 (1989), 467–510 | DOI | MR
[24] Fuchssteiner B., Carillo S., “The action-angle transformation for soliton equations”, Phys. A, 166 (1990), 651–675 | DOI | MR | Zbl
[25] Fuchssteiner B., Chowdhury A. R., “A new approach to the quantum KdV”, Chaos Solitons Fractals, 5 (1995), 2345–2355 | DOI | MR | Zbl
[26] Fuchssteiner B., Fokas A. S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981), 47–66 | DOI | MR | Zbl
[27] Fuchssteiner B., Oevel W., “The bi-Hamiltonian structure of some nonlinear fifth- and seventh-order differential equations and recursion formulas for their symmetries and conserved covaria”, J. Math. Phys., 23 (1982), 358–363 | DOI | MR | Zbl
[28] Fuchssteiner B., Schulze T., Carillo S., “Explicit solutions for the Harry Dym equation”, J. Phys. A: Math. Gen., 25 (1992), 223–230 | DOI | MR | Zbl
[29] Gu C., Hu H., Zhou Z., Darboux transformations in integrable systems. Theory and their applications to geometry, Mathematical Physics Studies, 26, Springer, Dordrecht, 2005 | DOI | MR | Zbl
[30] Guo B. Y., Carillo S., “Infiltration in soils with prescribed boundary concentration”, Acta Math. Appl. Sinica, 6 (1990), 365–369 | DOI | MR | Zbl
[31] Guo B. Y., Rogers C., “On Harry–Dym equation and its solution”, Sci. China Ser. A, 32 (1989), 283–295 | MR | Zbl
[32] Gürses M., Karasu A., Sokolov V. V., “On construction of recursion operators from Lax representation”, J. Math. Phys., 40 (1999), 6473–6490, arXiv: solv-int/9909003 | DOI | MR
[33] Hopf E., “The partial differential equation $u_t+uu_x=\mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl
[34] Khalilov F. A., Khruslov E. Ya., “Matrix generalisation of the modified Korteweg–de Vries equation”, Inverse Problems, 6 (1990), 193–204 | DOI | MR | Zbl
[35] Kupershmidt B. A., “On a group of automorphisms of the noncommutative Burgers hierarchy”, J. Nonlinear Math. Phys., 12 (2005), 539–549 | DOI | MR | Zbl
[36] Levi D., Ragnisco O., Bruschi M., “Continuous and discrete matrix Burgers' hierarchies”, Nuovo Cimento B, 74 (1983), 33–51 | DOI | MR
[37] Liu Q. P., Athorne C., “Comment on “Matrix generalisation of the modified Korteweg–de Vries equation”,”, Inverse Problems, 7 (1991), 783–785 | DOI | MR | Zbl
[38] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[39] Marchenko V. A., Nonlinear equations and operator algebras, Mathematics and its Applications (Soviet Series), 17, D. Reidel Publishing Co., Dordrecht, 1988 | DOI | MR | Zbl
[40] Oevel W., Carillo S., “Squared eigenfunction symmetries for soliton equations. I”, J. Math. Anal. Appl., 217 (1998), 161–178 | DOI | MR
[41] Oevel W., Carillo S., “Squared eigenfunction symmetries for soliton equations. II”, J. Math. Anal. Appl., 217 (1998), 179–199 | DOI | MR | Zbl
[42] Oevel W., Rogers C., “Gauge transformations and reciprocal links in $2+1$ dimensions”, Rev. Math. Phys., 5 (1993), 299–330 | DOI | MR | Zbl
[43] Olver P. J., “Evolution equations possessing infinitely many symmetries”, J. Math. Phys., 18 (1977), 1212–1215 | DOI | MR | Zbl
[44] Olver P. J., Sokolov V. V., “Integrable evolution equations on associative algebras”, Comm. Math. Phys., 193 (1998), 245–268 | DOI | MR | Zbl
[45] Rogers C., “Reciprocal relations in non-steady one-dimensional gasdynamics”, Z. Angew. Math. Phys., 19 (1968), 58–63 | DOI | Zbl
[46] Rogers C., Ames W. F., Nonlinear boundary value problems in science and engineering, Mathematics in Science and Engineering, 183, Academic Press, Inc., Boston, MA, 1989 | MR
[47] Rogers C., Carillo S., “On reciprocal properties of the Caudrey–Dodd-Gibbon and Kaup–Kupershmidt hierarchies”, Phys. Scripta, 36 (1987), 865–869 | DOI | MR | Zbl
[48] Rogers C., Schief W. K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl
[49] Rogers C., Shadwick W. F., Bäcklund transformations and their applications, Mathematics in Science and Engineering, 161, Academic Press, Inc., New York–London, 1982 | MR | Zbl
[50] Schiebold C., “From the non-abelian to the scalar two-dimensional Toda lattice”, Glasg. Math. J., 47 (2005), 177–189 | DOI | MR
[51] Schiebold C., “Noncommutative AKNS systems and multisoliton solutions to the matrix sine-Gordon equation”, Discrete Contin. Dyn. Syst., 2009 (2009), 678–690 | DOI | MR | Zbl
[52] Schiebold C., “Cauchy-type determinants and integrable systems”, Linear Algebra Appl., 433 (2010), 447–475 | DOI | MR | Zbl
[53] Schiebold C., “The noncommutative AKNS system: projection to matrix systems, countable superposition and soliton-like solutions”, J. Phys. A: Math. Theor., 43 (2010), 434030, 18 pp. | DOI | MR | Zbl
[54] Schiebold C., “Structural properties of the noncommutative KdV recursion operator”, J. Math. Phys., 52 (2011), 113504, 16 pp. | DOI | MR | Zbl
[55] Schiff J., Symmetries of KdV and loop groups, arXiv: solv-int/9606004
[56] Svinolupov S. I., Sokolov V. V., “Vector-matrix generalizations of classical integrable equations”, Theoret. and Math. Phys., 100 (1994), 959–962 | DOI | MR | Zbl
[57] Weiss J., “On classes of integrable systems and the Painlevé property”, J. Math. Phys., 25 (1984), 13–24 | DOI | MR | Zbl
[58] Wilson G., “On the quasi-Hamiltonian formalism of the KdV equation”, Phys. Lett. A, 132 (1988), 445–450 | DOI | MR | Zbl