@article{SIGMA_2016_12_a84,
author = {Vincent Rivasseau},
title = {Constructive {Tensor} {Field} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a84/}
}
Vincent Rivasseau. Constructive Tensor Field Theory. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a84/
[1] Abdesselam A., “Field theoretic cluster expansions and the Brydges–Kennedy forest sum formula”, Slides of the talk for the conference, Combinatorial Identities and Their Applications in Statistical Mechanics (April 2008, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK) http://people.virginia.edu/ãa4cr/Cambridge08Apr2008.pdf
[2] Abdesselam A., Rivasseau V., “Trees, forests and jungles: a botanical garden for cluster expansions”, Constructive Physics (Palaiseau, 1994), Lecture Notes in Phys., 446, Springer, Berlin, 1995, 7–36, arXiv: hep-th/9409094 | DOI | MR | Zbl
[3] Ambjørn J., Simplicial Euclidean and Lorentzian quantum gravity, arXiv: gr-qc/0201028
[4] Ambjørn J., Durhuus B., Jónsson T., “Three-dimensional simplicial quantum gravity and generalized matrix models”, Modern Phys. Lett. A, 6 (1991), 1133–1146 | DOI | MR | Zbl
[5] Ben Geloun J., “Renormalizable models in rank $d\geq 2$ tensorial group field theory”, Comm. Math. Phys., 332 (2014), 117–188, arXiv: 1306.1201 | DOI | MR | Zbl
[6] Ben Geloun J., Ramgoolam S., “Counting tensor model observables and branched covers of the 2-sphere”, Ann. Inst. Henri Poincaré D, 1 (2014), 77–138, arXiv: 1307.6490 | DOI | MR | Zbl
[7] Ben Geloun J., Rivasseau V., “A renormalizable 4-dimensional tensor field theory”, Comm. Math. Phys., 318 (2013), 69–109, arXiv: 1111.4997 | DOI | MR | Zbl
[8] Bergère M. C., David F., “Ambiguities of renormalized $\varphi^{4}_{4}$ field theory and the singularities of its Borel transform”, Phys. Lett. B, 135 (1984), 412–416 | DOI | MR
[9] Billionnet C., Renouard P., “Analytic interpolation and Borel summability of the $({\lambda \over N}\Phi_{N}^{:4})_{2}$ models. I. Finite volume approximation”, Comm. Math. Phys., 84 (1982), 257–295 | DOI | MR
[10] Bonzom V., “New $1/N$ expansions in random tensor models”, J. High Energy Phys., 2013:6 (2013), 062, 25 pp., arXiv: 1211.1657 | DOI | MR | Zbl
[11] Bonzom V., Delepouve T., Rivasseau V., “Enhancing non-melonic triangulations: a tensor model mixing melonic and planar maps”, Nuclear Phys. B, 895 (2015), 161–191, arXiv: 1502.01365 | DOI | MR | Zbl
[12] Bonzom V., Gurau R., Rivasseau V., “Random tensor models in the large $N$ limit: uncoloring the colored tensor models”, Phys. Rev. D, 85 (2012), 084037, 12 pp., arXiv: 1202.3637 | DOI | MR
[13] Brydges D. C., Kennedy T., “Mayer expansions and the Hamilton–Jacobi equation”, J. Statist. Phys., 48 (1987), 19–49 | DOI | MR
[14] Carrozza S., Oriti D., Rivasseau V., “Renormalization of a ${\rm SU}(2)$ tensorial group field theory in three dimensions”, Comm. Math. Phys., 330 (2014), 581–637, arXiv: 1303.6772 | DOI | MR | Zbl
[15] Carrozza S., Oriti D., Rivasseau V., “Renormalization of tensorial group field theories: Abelian ${\rm U}(1)$ models in four dimensions”, Comm. Math. Phys., 327 (2014), 603–641, arXiv: 1207.6734 | DOI | MR | Zbl
[16] David F., Feldman J., Rivasseau V., “On the large order behavior of $\phi^4_4$”, Comm. Math. Phys., 116 (1988), 215–233 | DOI | MR | Zbl
[17] de Calan C., Rivasseau V., “The perturbation series for $\Phi^{4}_{3}$ field theory is divergent”, Comm. Math. Phys., 83 (1982), 77–82 | DOI | MR
[18] Delepouve T., Gurau R., Rivasseau V., “Universality and Borel summability of arbitrary quartic tensor models”, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), 821–848, arXiv: 1403.0170 | DOI | MR | Zbl
[19] Delepouve T., Rivasseau V., “Constructive tensor field theory: the $T^4_3$ model”, Comm. Math. Phys., 345 (2016), 477–506, arXiv: 1412.5091 | DOI | MR | Zbl
[20] Di Francesco P., Ginsparg P., Zinn-Justin J., “$2$D gravity and random matrices”, Phys. Rep., 254 (1995), 1–133, arXiv: hep-th/9306153 | DOI | MR
[21] Eckmann J. P., Magnen J., Sénéor R., “Decay properties and Borel summability for the Schwinger functions in $P(\phi)_{2}$ theories”, Comm. Math. Phys., 39 (1975), 251–271 | DOI | MR
[22] Feldman J., Magnen J., Rivasseau V., Sénéor R., “Construction and Borel summability of infrared $\Phi^4_4$ by a phase space expansion”, Comm. Math. Phys., 109 (1987), 437–480 | DOI | MR
[23] Fröhlich J., Mardin A., Rivasseau V., “Borel summability of the $1/N$ expansion for the $N$-vector [${\rm O}(N)$ nonlinear $\sigma $] models”, Comm. Math. Phys., 86 (1982), 87–110 | DOI | MR
[24] Gross M., “Tensor models and simplicial quantum gravity in $>2$-D”, Nuclear Phys. B Proc. Suppl., 25A (1992), 144–149 | DOI | MR | Zbl
[25] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$-theory on noncommutative ${\mathbb R}^4$ in the matrix base”, Comm. Math. Phys., 256 (2005), 305–374, arXiv: hep-th/0401128 | DOI | MR | Zbl
[26] Gurau R., “The $1/N$ expansion of colored tensor models”, Ann. Henri Poincaré, 12 (2011), 829–847, arXiv: 1011.2726 | DOI | MR | Zbl
[27] Gurau R., “Colored group field theory”, Comm. Math. Phys., 304 (2011), 69–93, arXiv: 0907.2582 | DOI | MR | Zbl
[28] Gurau R., “The complete $1/N$ expansion of colored tensor models in arbitrary dimension”, Ann. Henri Poincaré, 13 (2012), 399–423, arXiv: 1102.5759 | DOI | MR | Zbl
[29] Gurau R., “The $1/N$ expansion of tensor models beyond perturbation theory”, Comm. Math. Phys., 330 (2014), 973–1019, arXiv: 1304.2666 | DOI | MR | Zbl
[30] Gurau R., “Universality for random tensors”, Ann. Inst. Henri Poincaré Probab. Stat., 50 (2014), 1474–1525, arXiv: 1111.0519 | DOI | MR | Zbl
[31] Gurau R., Rivasseau V., “The $1/N$ expansion of colored tensor models in arbitrary dimension”, Europhys. Lett., 95 (2011), 50004, 5 pp., arXiv: 1101.4182 | DOI | MR
[32] Gurau R., Rivasseau V., “The multiscale loop vertex expansion”, Ann. Henri Poincaré, 16 (2015), 1869–1897, arXiv: 1312.7226 | DOI | MR | Zbl
[33] Gurau R., Rivasseau V., Sfondrini A., Renormalization: an advanced overview, arXiv: 1401.5003
[34] Gurau R., Ryan J. P., “Colored tensor models – a review”, SIGMA, 8 (2012), 020, 78 pp., arXiv: 1109.4812 | DOI | MR | Zbl
[35] Gurau R. G., Krajewski T., “Analyticity results for the cumulants in a random matrix model”, Ann. Inst. Henri Poincaré D, 2 (2015), 169–228, arXiv: 1409.1705 | DOI | MR | Zbl
[36] Jaffe A., “Divergence of perturbation theory for bosons”, Comm. Math. Phys., 1 (1965), 127–149 | DOI | MR | Zbl
[37] Kruskal J. B., “On the shortest spanning subtree of a graph and the traveling salesman problem”, Proc. Amer. Math. Soc., 7 (1956), 48–50 | DOI | MR | Zbl
[38] Lahoche V., Constructive tensorial group field theory I: the $U(1)-T^4_3$ model, arXiv: 1510.05050
[39] Lahoche V., Constructive tensorial group field theory II: the $U(1)-T^4_4$ model, arXiv: 1510.05051
[40] Lahoche V., Oriti D., Renormalization of a tensorial field theory on the homogeneous space ${\rm SU}(2)/{\rm U}(1)$, arXiv: 1506.08393
[41] Lahoche V., Oriti D., Rivasseau V., “Renormalization of an Abelian tensor group field theory: solution at leading order”, J. High Energy Phys., 2015:4 (2015), 095, 41 pp., arXiv: 1501.02086 | DOI | MR
[42] Lionni L., Rivasseau V., Note on the intermediate field representation of $\Phi^{2k}$ theory in zero dimension, arXiv: 1601.02805
[43] Magnen J., Noui K., Rivasseau V., Smerlak M., “Scaling behavior of three-dimensional group field theory”, Classical Quantum Gravity, 26 (2009), 185012, 25 pp., arXiv: 0906.5477 | DOI | MR | Zbl
[44] Magnen J., Sénéor R., “Phase space cell expansion and Borel summability for the Euclidean $\phi_{3}^{4}$ theory”, Comm. Math. Phys., 56 (1977), 237–276 | DOI | MR
[45] Nelson E., “A quartic interaction in two dimensions”, Mathematical Theory of Elementary Particles, Proc. Conf. (Dedham, Mass., 1965), M.I.T. Press, Cambridge, Mass., 1966, 69–73 | MR
[46] Rivasseau V., “Constructive matrix theory”, J. High Energy Phys., 2007:9 (2007), 008, 13 pp., arXiv: 0706.1224 | DOI | MR
[47] Rivasseau V., “The tensor track, III”, Fortschr. Phys., 62 (2014), 81–107, arXiv: 1311.1461 | DOI | MR | Zbl
[48] Rivasseau V., Why are tensor field theories asymptotically free?, Europhys. Lett., 111 (2015), 60011, 6 pp., arXiv: 1507.04190 | DOI
[49] Rivasseau V., “Random tensors and quantum gravity”, SIGMA, 12 (2016), 069, 17 pp., arXiv: 1603.07278 | DOI | MR | Zbl
[50] Rivasseau V., Tanasa A., “Generalized constructive tree weights”, J. Math. Phys., 55 (2014), 043509, 13 pp., arXiv: 1310.2424 | DOI | MR | Zbl
[51] Rivasseau V., Vignes-Tourneret F., Constructive tensor field theory: the $T^4_4$ model, inpreparation
[52] Rivasseau V., Wang Z., “Loop vertex expansion for $\Phi^{2k}$ theory in zero dimension”, J. Math. Phys., 51 (2010), 092304, 17 pp., arXiv: 1003.1037 | DOI | MR | Zbl
[53] Rivasseau V., Wang Z., “How to resum Feynman graphs”, Ann. Henri Poincaré, 15 (2014), 2069–2083, arXiv: 1304.5913 | DOI | MR | Zbl
[54] Samary D. O., “Beta functions of ${\rm U}(1)^d$ gauge invariant just renormalizable tensor models”, Phys. Rev. D, 88 (2013), 105003, 15 pp., arXiv: 1303.7256 | DOI
[55] Samary D. O., Pérez-Sánchez C. I., Vignes-Tourneret F., Wulkenhaar R., “Correlation functions of a just renormalizable tensorial group field theory: the melonic approximation”, Classical Quantum Gravity, 32 (2015), 175012, 18 pp., arXiv: 1411.7213 | DOI | MR | Zbl
[56] Samary D. O., Vignes-Tourneret F., “Just renormalizable TGFT's on ${\rm U}(1)^d$ with gauge invariance”, Comm. Math. Phys., 329 (2014), 545–578, arXiv: 1211.2618 | DOI | MR | Zbl
[57] Sasakura N., “Tensor model for gravity and orientability of manifold”, Modern Phys. Lett. A, 6 (1991), 2613–2623 | DOI | MR | Zbl
[58] Sokal A. D., “An improvement of Watson's theorem on Borel summability”, J. Math. Phys., 21 (1980), 261–263 | DOI | MR