@article{SIGMA_2016_12_a83,
author = {Yury B. Chernyakov and Georgy I. Sharygin and Alexander S. Sorin},
title = {Bruhat {Order} in the {Full} {Symmetric} $\mathfrak{sl}_n$ {Toda} {Lattice} on {Partial} {Flag} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a83/}
}
TY - JOUR
AU - Yury B. Chernyakov
AU - Georgy I. Sharygin
AU - Alexander S. Sorin
TI - Bruhat Order in the Full Symmetric $\mathfrak{sl}_n$ Toda Lattice on Partial Flag Space
JO - Symmetry, integrability and geometry: methods and applications
PY - 2016
VL - 12
UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a83/
LA - en
ID - SIGMA_2016_12_a83
ER -
%0 Journal Article
%A Yury B. Chernyakov
%A Georgy I. Sharygin
%A Alexander S. Sorin
%T Bruhat Order in the Full Symmetric $\mathfrak{sl}_n$ Toda Lattice on Partial Flag Space
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a83/
%G en
%F SIGMA_2016_12_a83
Yury B. Chernyakov; Georgy I. Sharygin; Alexander S. Sorin. Bruhat Order in the Full Symmetric $\mathfrak{sl}_n$ Toda Lattice on Partial Flag Space. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a83/
[1] Adler M., “On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg–de Vries type equations”, Invent. Math., 50 (1978), 219–248 | DOI | MR
[2] Arhangel'skiĭ A. A., “Completely integrable Hamiltonian systems on the group of triangular matrices”, Math. USSR Sb., 36 (1980), 127–134 | DOI | MR
[3] Björner A., Brenti F., Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New York | DOI
[4] Brion M., Lectures on the geometry of flag varieties, arXiv: math.AG/0410240 | MR
[5] Chernyakov Yu. B., Sharygin G. I., Sorin A. S., “Bruhat order in full symmetric Toda system”, Comm. Math. Phys., 330 (2014), 367–399, arXiv: 1212.4803 | DOI | MR | Zbl
[6] Chernyakov Yu. B., Sorin A. S., “Explicit semi-invariants and integrals of the full symmetric $\mathfrak{sl}_n$ Toda lattice”, Lett. Math. Phys., 104 (2014), 1045–1052, arXiv: 1306.1647 | DOI | MR | Zbl
[7] De Mari F., Pedroni M., “Toda flows and real Hessenberg manifolds”, J. Geom. Anal., 9 (1999), 607–625 | DOI | MR | Zbl
[8] Deift P., Li L. C., Nanda T., Tomei C., “The Toda flow on a generic orbit is integrable”, Comm. Pure Appl. Math., 39 (1986), 183–232 | DOI | MR | Zbl
[9] Deift P., Nanda T., Tomei C., “Ordinary differential equations and the symmetric eigenvalue problem”, SIAM J. Numer. Anal., 20 (1983), 1–22 | DOI | MR | Zbl
[10] Ercolani N. M., Flaschka H., Singer S., “The geometry of the full Kostant–Toda lattice”, Integrable Systems, Luminy, 1991, Progr. Math., 115, Birkhäuser Boston, Boston, MA, 1993, 181–225 | DOI | MR | Zbl
[11] Flaschka H., “The Toda lattice. I. Existence of integrals”, Phys. Rev. B, 9 (1974), 1924–1925 | DOI | MR | Zbl
[12] Flaschka H., “On the Toda lattice. II. Inverse-scattering solution”, Progr. Theoret. Phys., 51 (1974), 703–716 | DOI | MR | Zbl
[13] Fré P., Sorin A. S., “The Weyl group and asymptotics: all supergravity billiards have a closed form general integral”, Nuclear Phys. B, 815 (2009), 430–494, arXiv: 0710.1059 | DOI | MR | Zbl
[14] Fulton W., Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[15] Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978 | MR | Zbl
[16] Hénon M., “Integrals of the Toda lattice”, Phys. Rev. B, 9 (1974), 1921–1923 | DOI | MR
[17] Kodama Y., McLaughlin K. T.-R., “Explicit integration of the full symmetric Toda hierarchy and the sorting property”, Lett. Math. Phys., 37 (1996), 37–47, arXiv: solv-int/9502006 | DOI | MR | Zbl
[18] Kodama Y., Williams L., “The full Kostant–Toda hierarchy on the positive flag variety”, Comm. Math. Phys., 335 (2015), 247–283, arXiv: 1308.5011 | DOI | MR | Zbl
[19] Kostant B., “The solution to a generalized Toda lattice and representation theory”, Adv. Math., 34 (1979), 195–338 | DOI | MR | Zbl
[20] Moser J., “Finitely many mass points on the line under the influence of an exponential potential — an integrable system”, Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., 38, Springer, Berlin, 1975, 467–497 | DOI | MR
[21] Symes W. W., “Systems of Toda type, inverse spectral problems, and representation theory”, Invent. Math., 59 (1980), 13–51 | DOI | MR | Zbl
[22] Toda M., “Vibration of a chain with nonlinear interaction”, J. Phys. Soc. Japan, 22 (1967), 431–436 | DOI
[23] Toda M., “Wave propagation in anharmonic lattices”, J. Phys. Soc. Japan, 23 (1967), 501–506 | DOI