@article{SIGMA_2016_12_a82,
author = {Folkmar Bornemann},
title = {On the {Scaling} {Limits} of {Determinantal} {Point} {Processes} with {Kernels} {Induced} by {Sturm{\textendash}Liouville} {Operators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a82/}
}
TY - JOUR AU - Folkmar Bornemann TI - On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm–Liouville Operators JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a82/ LA - en ID - SIGMA_2016_12_a82 ER -
%0 Journal Article %A Folkmar Bornemann %T On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm–Liouville Operators %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a82/ %G en %F SIGMA_2016_12_a82
Folkmar Bornemann. On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm–Liouville Operators. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a82/
[1] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964 | MR
[2] Anderson G. W., Guionnet A., Zeitouni O., An introduction to random matrices, Cambridge Studies in Advanced Mathematics, 118, Cambridge University Press, Cambridge, 2010 | DOI | MR | Zbl
[3] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[4] Borodin A., Olshanski G., “Asymptotics of Plancherel-type random partitions”, J. Algebra, 313 (2007), 40–60, arXiv: math.PR/0610240 | DOI | MR | Zbl
[5] Collins B., “Product of random projections, Jacobi ensembles and universality problems arising from free probability”, Probab. Theory Related Fields, 133 (2005), 315–344, arXiv: math.PR/0406560 | DOI | MR | Zbl
[6] Deift P. A., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lecture Notes in Mathematics, 3, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 1999 | MR
[7] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, McGraw-Hill Book Company, New York, 1953
[8] Forrester P. J., Log-gases and random matrices, London Mathematical Society Monographs Series, 34, Princeton University Press, Princeton, NJ, 2010 | DOI | MR | Zbl
[9] Gohberg I., Goldberg S., Krupnik N., Traces and determinants of linear operators, Operator Theory: Advances and Applications, 116, Birkhäuser Verlag, Basel, 2000 | DOI | MR | Zbl
[10] Hutson V., Pym J. S., Cloud M. J., Applications of functional analysis and operator theory, Mathematics in Science and Engineering, 200, 2nd ed., Elsevier B. V., Amsterdam, 2005 | MR | Zbl
[11] Johansson K., “Shape fluctuations and random matrices”, Comm. Math. Phys., 209 (2000), 437–476, arXiv: math.CO/9903134 | DOI | MR | Zbl
[12] Johnstone I. M., “On the distribution of the largest eigenvalue in principal components analysis”, Ann. Statist., 29 (2001), 295–327 | DOI | MR | Zbl
[13] Johnstone I. M., “Multivariate analysis and Jacobi ensembles: largest eigenvalue, Tracy–Widom limits and rates of convergence”, Ann. Statist., 36 (2008), 2638–2716, arXiv: 0803.3408 | DOI | MR | Zbl
[14] Kuijlaars A. B. J., “Universality”, The Oxford Handbook of Random Matrix Theory, Oxford University Press, Oxford, 2011, 103–134, arXiv: 1103.5922 | MR | Zbl
[15] Lax P. D., Functional analysis, Pure and Applied Mathematics, Wiley-Interscience, New York, 2002 | MR | Zbl
[16] Lubinsky D. S., “A new approach to universality limits involving orthogonal polynomials”, Ann. of Math., 170 (2009), 915–939, arXiv: math.CA/0701307 | DOI | MR | Zbl
[17] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, New York–London, 1972 | Zbl
[18] Simon B., Trace ideals and their applications, Mathematical Surveys and Monographs, 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[19] Stolz G., Weidmann J., “Approximation of isolated eigenvalues of ordinary differential operators”, J. Reine Angew. Math., 445 (1993), 31–44 | DOI | MR | Zbl
[20] Tao T., Topics in random matrix theory, Graduate Studies in Mathematics, 132, Amer. Math. Soc., Providence, RI, 2012 | DOI | MR | Zbl
[21] Tracy C. A., Widom H., “Level-spacing distributions and the Airy kernel”, Comm. Math. Phys., 159 (1994), 151–174, arXiv: hep-th/9211141 | DOI | MR | Zbl
[22] Tracy C. A., Widom H., “Level spacing distributions and the Bessel kernel”, Comm. Math. Phys., 161 (1994), 289–309, arXiv: hep-th/9304063 | DOI | MR | Zbl
[23] Wachter K. W., “The limiting empirical measure of multiple discriminant ratios”, Ann. Statist., 8 (1980), 937–957 | DOI | MR | Zbl
[24] Weidmann J., Linear operators in Hilbert spaces, Graduate Texts in Mathematics, 68, Springer-Verlag, New York–Berlin, 1980 | DOI | MR | Zbl
[25] Weidmann J., Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, 1258, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl