@article{SIGMA_2016_12_a80,
author = {Giovanni Rastelli},
title = {Born{\textendash}Jordan and {Weyl} {Quantizations} of the {2D} {Anisotropic} {Harmonic} {Oscillator}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a80/}
}
Giovanni Rastelli. Born–Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a80/
[1] Ballesteros Á., Enciso A., Herranz F. J., Ragnisco O., Riglioni D., “Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability”, Ann. Physics, 326 (2011), 2053–2073, arXiv: 1102.5494 | DOI | MR | Zbl
[2] Ballesteros Á., Herranz F. J., Kuru {Ş}., Negro J., “The anisotropic oscillator on curved spaces: a new exactly solvable model”, Ann. Physics, 373 (2016), 399–423, arXiv: 1605.02384 | DOI
[3] Born M., Jordan P., “Zur Quantenmechanik”, Z. Phys., 34 (1925), 858–888 | DOI | Zbl
[4] Born M., Heisenberg W., Jordan P., “Zur Quantenmechanik. II”, Z. Phys., 35 (1925), 557–615 | DOI
[5] Celeghini E., Kuru {Ş}., Negro J., del Olmo M. A., “A unified approach to quantum and classical TTW systems based on factorizations”, Ann. Physics, 332 (2013), 27–37 | DOI | MR | Zbl
[6] Chanu C., Degiovanni L., Rastelli G., “Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization”, J. Phys. Conf. Ser., 343 (2012), 012101, 15 pp., arXiv: 1111.0030 | DOI | MR
[7] Chanu C. M., Degiovanni L., Rastelli G., “Extensions of Hamiltonian systems dependent on a rational parameter”, J. Math. Phys., 55 (2014), 122703, 11 pp., arXiv: 1310.5690 | DOI | MR | Zbl
[8] Chanu C. M., Degiovanni L., Rastelli G., “The Tremblay–Turbiner–Winternitz system as extended Hamiltonian”, J. Math. Phys., 55 (2014), 122701, 8 pp., arXiv: 1404.4825 | DOI | MR | Zbl
[9] de Gosson M. A., Born–Jordan quantization. Theory and applications, Fundamental Theories of Physics, 182, Springer, Cham, 2016 | DOI | MR | Zbl
[10] Duval C., Valent G., “Quantum integrability of quadratic Killing tensors”, J. Math. Phys., 46 (2005), 053516, 22 pp., arXiv: math-ph/0412059 | DOI | MR | Zbl
[11] Jauch J. M., Hill E. L. paper On the problem of degeneracy in quantum mechanics, Phys. Rev., 57 (1940), 641–645 | DOI | MR | Zbl
[12] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[13] Post S., Winternitz P., “General $N$th order integrals of motion in the Euclidean plane”, J. Phys. A: Math. Theor., 48 (2015), 405201, 24 pp., arXiv: 1501.00471 | DOI | MR | Zbl
[14] Weyl H., “Quantenmechanik und Gruppentheorie”, Z. Phys., 46 (1927), 1–46 | DOI | Zbl
[15] Weyl H., The theory of groups and quantum mechanics, Dover, New York, 1950