Born–Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the Born–Jordan and Weyl quantization formulas for polynomials in canonical coordinates to the constants of motion of some examples of the superintegrable 2D anisotropic harmonic oscillator. Our aim is to study the behaviour of the algebra of the constants of motion after the different quantization procedures. In the examples considered, we have that the Weyl formula always preserves the original superintegrable structure of the system, while the Born–Jordan formula, when producing different operators than the Weyl's one, does not.
Keywords: Born–Jordan quantization; Weyl quantization; superintegrable systems; extended systems.
@article{SIGMA_2016_12_a80,
     author = {Giovanni Rastelli},
     title = {Born{\textendash}Jordan and {Weyl} {Quantizations} of the {2D} {Anisotropic} {Harmonic} {Oscillator}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a80/}
}
TY  - JOUR
AU  - Giovanni Rastelli
TI  - Born–Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a80/
LA  - en
ID  - SIGMA_2016_12_a80
ER  - 
%0 Journal Article
%A Giovanni Rastelli
%T Born–Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a80/
%G en
%F SIGMA_2016_12_a80
Giovanni Rastelli. Born–Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a80/

[1] Ballesteros Á., Enciso A., Herranz F. J., Ragnisco O., Riglioni D., “Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability”, Ann. Physics, 326 (2011), 2053–2073, arXiv: 1102.5494 | DOI | MR | Zbl

[2] Ballesteros Á., Herranz F. J., Kuru {Ş}., Negro J., “The anisotropic oscillator on curved spaces: a new exactly solvable model”, Ann. Physics, 373 (2016), 399–423, arXiv: 1605.02384 | DOI

[3] Born M., Jordan P., “Zur Quantenmechanik”, Z. Phys., 34 (1925), 858–888 | DOI | Zbl

[4] Born M., Heisenberg W., Jordan P., “Zur Quantenmechanik. II”, Z. Phys., 35 (1925), 557–615 | DOI

[5] Celeghini E., Kuru {Ş}., Negro J., del Olmo M. A., “A unified approach to quantum and classical TTW systems based on factorizations”, Ann. Physics, 332 (2013), 27–37 | DOI | MR | Zbl

[6] Chanu C., Degiovanni L., Rastelli G., “Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization”, J. Phys. Conf. Ser., 343 (2012), 012101, 15 pp., arXiv: 1111.0030 | DOI | MR

[7] Chanu C. M., Degiovanni L., Rastelli G., “Extensions of Hamiltonian systems dependent on a rational parameter”, J. Math. Phys., 55 (2014), 122703, 11 pp., arXiv: 1310.5690 | DOI | MR | Zbl

[8] Chanu C. M., Degiovanni L., Rastelli G., “The Tremblay–Turbiner–Winternitz system as extended Hamiltonian”, J. Math. Phys., 55 (2014), 122701, 8 pp., arXiv: 1404.4825 | DOI | MR | Zbl

[9] de Gosson M. A., Born–Jordan quantization. Theory and applications, Fundamental Theories of Physics, 182, Springer, Cham, 2016 | DOI | MR | Zbl

[10] Duval C., Valent G., “Quantum integrability of quadratic Killing tensors”, J. Math. Phys., 46 (2005), 053516, 22 pp., arXiv: math-ph/0412059 | DOI | MR | Zbl

[11] Jauch J. M., Hill E. L. paper On the problem of degeneracy in quantum mechanics, Phys. Rev., 57 (1940), 641–645 | DOI | MR | Zbl

[12] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl

[13] Post S., Winternitz P., “General $N$th order integrals of motion in the Euclidean plane”, J. Phys. A: Math. Theor., 48 (2015), 405201, 24 pp., arXiv: 1501.00471 | DOI | MR | Zbl

[14] Weyl H., “Quantenmechanik und Gruppentheorie”, Z. Phys., 46 (1927), 1–46 | DOI | Zbl

[15] Weyl H., The theory of groups and quantum mechanics, Dover, New York, 1950