Bipolar Lawson Tau-Surfaces and Generalized Lawson Tau-Surfaces
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently Penskoi [J. Geom. Anal. 25 (2015), 2645–2666, arXiv:1308.1628] generalized the well known two-parametric family of Lawson tau-surfaces $\tau_{r,m}$ minimally immersed in spheres to a three-parametric family $T_{a,b,c}$ of tori and Klein bottles minimally immersed in spheres. It was remarked that this family includes surfaces carrying all extremal metrics for the first non-trivial eigenvalue of the Laplace–Beltrami operator on the torus and on the Klein bottle: the Clifford torus, the equilateral torus and surprisingly the bipolar Lawson Klein bottle $\tilde{\tau}_{3,1}$. In the present paper we show in Theorem 1 that this three-parametric family $T_{a,b,c}$ includes in fact all bipolar Lawson tau-surfaces $\tilde{\tau}_{r,m}$. In Theorem 3 we show that no metric on generalized Lawson surfaces is maximal except for $\tilde{\tau}_{3,1}$ and the equilateral torus.
Keywords: bipolar surface; Lawson tau-surface; minimal surface; extremal metric.
@article{SIGMA_2016_12_a8,
     author = {Broderick Causley},
     title = {Bipolar {Lawson} {Tau-Surfaces} and {Generalized} {Lawson} {Tau-Surfaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a8/}
}
TY  - JOUR
AU  - Broderick Causley
TI  - Bipolar Lawson Tau-Surfaces and Generalized Lawson Tau-Surfaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a8/
LA  - en
ID  - SIGMA_2016_12_a8
ER  - 
%0 Journal Article
%A Broderick Causley
%T Bipolar Lawson Tau-Surfaces and Generalized Lawson Tau-Surfaces
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a8/
%G en
%F SIGMA_2016_12_a8
Broderick Causley. Bipolar Lawson Tau-Surfaces and Generalized Lawson Tau-Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a8/

[1] Bando S., Urakawa H., “Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds”, Tôhoku Math. J., 35 (1983), 155–172 | DOI | MR | Zbl

[2] Berger M., “Sur les premières valeurs propres des variétés riemanniennes”, Compositio Math., 26 (1973), 129–149 | MR | Zbl

[3] Burstall F. E., “Harmonic tori in spheres and complex projective spaces”, J. Reine Angew. Math., 469 (1995), 149–177 | DOI | MR | Zbl

[4] Byrd P. F., Friedman M. D., Handbook of elliptic integrals for engineers and scientists, Die Grundlehren der mathematischen Wissenschaften, 67, 2nd ed., Springer-Verlag, New York–Heidelberg, 1971 | DOI | MR | Zbl

[5] Carberry E., “Harmonic maps and integrable systems”, Geometry and Topology Down Under, Contemp. Math., 597, Amer. Math. Soc., Providence, RI, 2013, 139–163, arXiv: 1211.3101 | DOI | MR | Zbl

[6] Colbois B., El Soufi A., “Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ‘conformal spectrum’”, Ann. Global Anal. Geom., 24 (2003), 337–349, arXiv: math.DG/0409316 | DOI | MR | Zbl

[7] El Soufi A., Giacomini H., Jazar M., “A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle”, Duke Math. J., 135 (2006), 181–202, arXiv: math.MG/0701773 | DOI | MR | Zbl

[8] El Soufi A., Ilias S., “Riemannian manifolds admitting isometric immersions by their first eigenfunctions”, Pacific J. Math., 195 (2000), 91–99 | DOI | MR | Zbl

[9] El Soufi A., Ilias S., “Laplacian eigenvalue functionals and metric deformations on compact manifolds”, J. Geom. Phys., 58 (2008), 89–104, arXiv: math.MG/0701777 | DOI | MR | Zbl

[10] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. III, McGraw-Hill Book Company, New York

[11] Hitchin N. J., “Harmonic maps from a $2$-torus to the $3$-sphere”, J. Differential Geom., 31 (1990), 627–710 | MR | Zbl

[12] Hsiang W.-Y., Lawson H. B. (Jr.), “Minimal submanifolds of low cohomogeneity”, J. Differential Geom., 5 (1971), 1–38 | MR | Zbl

[13] Jakobson D., Nadirashvili N., Polterovich I., “Extremal metric for the first eigenvalue on a Klein bottle”, Canad. J. Math., 58 (2006), 381–400, arXiv: math.SP/0311484 | DOI | MR | Zbl

[14] Kao C., Lai R., Osting B., Maximization of Laplace–Beltrami eigenvalues on closed Riemannian surfaces, arXiv: 1405.4944

[15] Karpukhin M. A., “Nonmaximality of extremal metrics on a torus and the Klein bottle”, Sb. Math., 204 (2013), 1728–1744, arXiv: 1210.8122 | DOI | MR | Zbl

[16] Karpukhin M. A., “Spectral properties of bipolar surfaces to Otsuki tori”, J. Spectr. Theory, 4 (2014), 87–111, arXiv: 1205.6316 | DOI | MR | Zbl

[17] Karpukhin M. A., “Spectral properties of a family of minimal tori of revolution in five-dimensional sphere”, Canad. Math. Bull., 58 (2015), 285–296, arXiv: 1301.2483 | DOI | MR | Zbl

[18] Korevaar N., “Upper bounds for eigenvalues of conformal metrics”, J. Differential Geom., 37 (1993), 73–93 | MR | Zbl

[19] Lapointe H., “Spectral properties of bipolar minimal surfaces in ${\mathbb S}^4$”, Differential Geom. Appl., 26 (2008), 9–22, arXiv: math.DG/0511443 | DOI | MR | Zbl

[20] Lawson H. B. (Jr.), “Complete minimal surfaces in $S^{3}$”, Ann. of Math., 92 (1970), 335–374 | DOI | MR | Zbl

[21] Mironov A. E., “New examples of {H}amilton-minimal and minimal Lagrangian submanifolds in ${\mathbb C}^n$ and ${\mathbb C}{\rm P}^n$”, Sb. Math., 195 (2004), 85–96, arXiv: math.DG/0309128 | DOI | MR | Zbl

[22] Mironov A. E., “Finite-gap minimal Lagrangian surfaces in ${\mathbb C}{\rm P}^2$”, Riemann Surfaces, Harmonic Maps and Visualization, OCAMI Stud., 3, Osaka Munic. Univ. Press, Osaka, 2010, 185–196, arXiv: 1005.3402 | MR | Zbl

[23] Nadirashvili N., “Berger's isoperimetric problem and minimal immersions of surfaces”, Geom. Funct. Anal., 6 (1996), 877–897 | DOI | MR | Zbl

[24] Nadirashvili N., Sire Y., Isoperimetric inequality for the third eigenvalue of the Laplace–Beltrami operator on $\mathbb{S}^2$, arXiv: 1506.07017

[25] Penskoi A. V., “Extremal spectral properties of Lawson tau-surfaces and the Lamé equation”, Mosc. Math. J., 12 (2012), 173–192, arXiv: 1009.0285 | MR | Zbl

[26] Penskoi A. V., “Extremal metrics for the eigenvalues of the Laplace–Beltrami operator on surfaces”, Russian Math. Surveys, 68 (2013), 1073–1130 | DOI | MR | Zbl

[27] Penskoi A. V., “Extremal spectral properties of Otsuki tori”, Math. Nachr., 286 (2013), 379–391, arXiv: 1108.5160 | DOI | MR | Zbl

[28] Penskoi A. V., “Generalized Lawson tori and Klein bottles”, J. Geom. Anal., 25 (2015), 2645–2666, arXiv: 1308.1628 | DOI | MR

[29] Yang P. C., Yau S. T., “Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 7 (1980), 55–63 | MR