@article{SIGMA_2016_12_a8,
author = {Broderick Causley},
title = {Bipolar {Lawson} {Tau-Surfaces} and {Generalized} {Lawson} {Tau-Surfaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a8/}
}
Broderick Causley. Bipolar Lawson Tau-Surfaces and Generalized Lawson Tau-Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a8/
[1] Bando S., Urakawa H., “Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds”, Tôhoku Math. J., 35 (1983), 155–172 | DOI | MR | Zbl
[2] Berger M., “Sur les premières valeurs propres des variétés riemanniennes”, Compositio Math., 26 (1973), 129–149 | MR | Zbl
[3] Burstall F. E., “Harmonic tori in spheres and complex projective spaces”, J. Reine Angew. Math., 469 (1995), 149–177 | DOI | MR | Zbl
[4] Byrd P. F., Friedman M. D., Handbook of elliptic integrals for engineers and scientists, Die Grundlehren der mathematischen Wissenschaften, 67, 2nd ed., Springer-Verlag, New York–Heidelberg, 1971 | DOI | MR | Zbl
[5] Carberry E., “Harmonic maps and integrable systems”, Geometry and Topology Down Under, Contemp. Math., 597, Amer. Math. Soc., Providence, RI, 2013, 139–163, arXiv: 1211.3101 | DOI | MR | Zbl
[6] Colbois B., El Soufi A., “Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ‘conformal spectrum’”, Ann. Global Anal. Geom., 24 (2003), 337–349, arXiv: math.DG/0409316 | DOI | MR | Zbl
[7] El Soufi A., Giacomini H., Jazar M., “A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle”, Duke Math. J., 135 (2006), 181–202, arXiv: math.MG/0701773 | DOI | MR | Zbl
[8] El Soufi A., Ilias S., “Riemannian manifolds admitting isometric immersions by their first eigenfunctions”, Pacific J. Math., 195 (2000), 91–99 | DOI | MR | Zbl
[9] El Soufi A., Ilias S., “Laplacian eigenvalue functionals and metric deformations on compact manifolds”, J. Geom. Phys., 58 (2008), 89–104, arXiv: math.MG/0701777 | DOI | MR | Zbl
[10] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. III, McGraw-Hill Book Company, New York
[11] Hitchin N. J., “Harmonic maps from a $2$-torus to the $3$-sphere”, J. Differential Geom., 31 (1990), 627–710 | MR | Zbl
[12] Hsiang W.-Y., Lawson H. B. (Jr.), “Minimal submanifolds of low cohomogeneity”, J. Differential Geom., 5 (1971), 1–38 | MR | Zbl
[13] Jakobson D., Nadirashvili N., Polterovich I., “Extremal metric for the first eigenvalue on a Klein bottle”, Canad. J. Math., 58 (2006), 381–400, arXiv: math.SP/0311484 | DOI | MR | Zbl
[14] Kao C., Lai R., Osting B., Maximization of Laplace–Beltrami eigenvalues on closed Riemannian surfaces, arXiv: 1405.4944
[15] Karpukhin M. A., “Nonmaximality of extremal metrics on a torus and the Klein bottle”, Sb. Math., 204 (2013), 1728–1744, arXiv: 1210.8122 | DOI | MR | Zbl
[16] Karpukhin M. A., “Spectral properties of bipolar surfaces to Otsuki tori”, J. Spectr. Theory, 4 (2014), 87–111, arXiv: 1205.6316 | DOI | MR | Zbl
[17] Karpukhin M. A., “Spectral properties of a family of minimal tori of revolution in five-dimensional sphere”, Canad. Math. Bull., 58 (2015), 285–296, arXiv: 1301.2483 | DOI | MR | Zbl
[18] Korevaar N., “Upper bounds for eigenvalues of conformal metrics”, J. Differential Geom., 37 (1993), 73–93 | MR | Zbl
[19] Lapointe H., “Spectral properties of bipolar minimal surfaces in ${\mathbb S}^4$”, Differential Geom. Appl., 26 (2008), 9–22, arXiv: math.DG/0511443 | DOI | MR | Zbl
[20] Lawson H. B. (Jr.), “Complete minimal surfaces in $S^{3}$”, Ann. of Math., 92 (1970), 335–374 | DOI | MR | Zbl
[21] Mironov A. E., “New examples of {H}amilton-minimal and minimal Lagrangian submanifolds in ${\mathbb C}^n$ and ${\mathbb C}{\rm P}^n$”, Sb. Math., 195 (2004), 85–96, arXiv: math.DG/0309128 | DOI | MR | Zbl
[22] Mironov A. E., “Finite-gap minimal Lagrangian surfaces in ${\mathbb C}{\rm P}^2$”, Riemann Surfaces, Harmonic Maps and Visualization, OCAMI Stud., 3, Osaka Munic. Univ. Press, Osaka, 2010, 185–196, arXiv: 1005.3402 | MR | Zbl
[23] Nadirashvili N., “Berger's isoperimetric problem and minimal immersions of surfaces”, Geom. Funct. Anal., 6 (1996), 877–897 | DOI | MR | Zbl
[24] Nadirashvili N., Sire Y., Isoperimetric inequality for the third eigenvalue of the Laplace–Beltrami operator on $\mathbb{S}^2$, arXiv: 1506.07017
[25] Penskoi A. V., “Extremal spectral properties of Lawson tau-surfaces and the Lamé equation”, Mosc. Math. J., 12 (2012), 173–192, arXiv: 1009.0285 | MR | Zbl
[26] Penskoi A. V., “Extremal metrics for the eigenvalues of the Laplace–Beltrami operator on surfaces”, Russian Math. Surveys, 68 (2013), 1073–1130 | DOI | MR | Zbl
[27] Penskoi A. V., “Extremal spectral properties of Otsuki tori”, Math. Nachr., 286 (2013), 379–391, arXiv: 1108.5160 | DOI | MR | Zbl
[28] Penskoi A. V., “Generalized Lawson tori and Klein bottles”, J. Geom. Anal., 25 (2015), 2645–2666, arXiv: 1308.1628 | DOI | MR
[29] Yang P. C., Yau S. T., “Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 7 (1980), 55–63 | MR