@article{SIGMA_2016_12_a79,
author = {Stephen Marsland and Robert I. McLachlan},
title = {M\"obius {Invariants} of {Shapes} and {Images}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a79/}
}
Stephen Marsland; Robert I. McLachlan. Möbius Invariants of Shapes and Images. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a79/
[1] Abu-Mostafa Y. S., Psaltis D., “Recognitive aspects of moment invariants”, IEEE Trans. Pattern Anal. Machine Intell., 6 (1984), 698–706 | DOI
[2] Aghayan R., Ellis T., Dehmeshki J., “Planar numerical signature theory applied to object recognition”, J. Math. Imaging Vision, 48 (2014), 583–605 | DOI | MR | Zbl
[3] Ahlfors L. V., “Cross-ratios and Schwarzian derivatives in $R^n$”, Complex Analysis, eds. J. Hersch, A. Huber, Birkhäuser, Basel, 1988, 1–15 | DOI | MR
[4] Ames A. D., Jalkio J. A., Shakiban C., “Three-dimensional object recognition using invariant Euclidean signature curves”, Analysis, Combinatorics and Computing, Nova Sci. Publ., Hauppauge, NY, 2002, 13–23 | MR | Zbl
[5] Åström K., “Fundamental difficulties with projective normalization of planar curves”, Applications of Invariance in Computer Vision, Lecture Notes in Computer Science, 825, Springer, Berlin–Heidelberg, 1994, 199–214 | DOI
[6] Bandeira A. S., Cahill J., Mixon D. G., Nelson A. A., “Saving phase: injectivity and stability for phase retrieval”, Appl. Comput. Harmon. Anal., 37 (2014), 106–125, arXiv: 1302.4618 | DOI | MR | Zbl
[7] Barrett D. E., Bolt M., “Cauchy integrals and Möbius geometry of curves”, Asian J. Math., 11 (2007), 47–53 | DOI | MR | Zbl
[8] Bauer M., Bruveris M., Michor P. W., “Overview of the geometries of shape spaces and diffeomorphism groups”, J. Math. Imaging Vision, 50 (2014), 60–97, arXiv: 1305.1150 | DOI | MR | Zbl
[9] Calabi E., Olver P. J., Shakiban C., Tannenbaum A., Haker S., “Differential and numerically invariant signature curves applied to object recognition”, Int. J. Comput. Vis., 26 (1998), 107–135 | DOI
[10] Edelsbrunner H., Harer J., “Persistent homology — a survey”, Surveys on Discrete and Computational Geometry, Contemp. Math., 453, Amer. Math. Soc., Providence, RI, 2008, 257–282 | DOI | MR | Zbl
[11] Feng S., Kogan I., Krim H., “Classification of curves in 2D and 3D via affine integral signatures”, Acta Appl. Math., 109 (2010), 903–937, arXiv: 0806.1984 | DOI | MR | Zbl
[12] Fridman B., Kuchment P., Lancaster K., Lissianoi S., Mogilevsky M., Ma D., Ponomarev I., Papanicolaou V., “Numerical harmonic analysis on the hyperbolic plane”, Appl. Anal., 76 (2000), 351–362 | DOI | MR | Zbl
[13] Gauthier J. P., Smach F., Lema{î}tre C., Miteran J., “Finding invariants of group actions on function spaces, a general methodology from non-abelian harmonic analysis”, Mathematical Control Theory and Finance, Springer, Berlin, 2008, 161–186 | DOI | MR | Zbl
[14] Ghorbel F., “A complete invariant description for gray-level images by the harmonic analysis approach”, Pattern Recognition Lett., 15 (1994), 1043–1051 | DOI
[15] Glaunès J., Qiu A., Miller M. I., Younes L., “Large deformation diffeomorphic metric curve mapping”, Int. J. Comput. Vis., 80 (2008), 317–336 | DOI
[16] Hann C. E., Hickman M. S., “Projective curvature and integral invariants”, Acta Appl. Math., 74 (2002), 177–193 | DOI | MR | Zbl
[17] Hickman M. S., “Euclidean signature curves”, J. Math. Imaging Vision, 43 (2012), 206–213 | DOI | MR | Zbl
[18] Hoff D.J., Olver P. J., “Extensions of invariant signatures for object recognition”, J. Math. Imaging Vision, 45 (2013), 176–185 | DOI | MR | Zbl
[19] Kakarala R., “The bispectrum as a source of phase-sensitive invariants for Fourier descriptors: a group-theoretic approach”, J. Math. Imaging Vision, 44 (2012), 341–353, arXiv: 0902.0196 | DOI | MR | Zbl
[20] Lenz R., Group theoretical methods in image processing, Lecture Notes in Computer Science, 413, Springer-Verlag, Berlin, 1990 | DOI | MR
[21] Manay S., Cremers D., Hong B., Yezzi A. J., Soatto S., “Integral invariants for shape matching”, IEEE Trans. Pattern Anal. Machine Intell., 28 (2006), 1602–1618 | DOI
[22] Marsland S., McLachlan R. I., Modin K., Perlmutter M., “Geodesic warps by conformal mappings”, Int. J. Comput. Vis., 105 (2013), 144–154, arXiv: 1203.3982 | DOI | MR | Zbl
[23] Michor P. W., Manifolds of differentiable mappings, Shiva Mathematics Series, 3, Shiva Publishing Ltd., Nantwich, 1980 | MR | Zbl
[24] Michor P. W., Mumford D., “An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach”, Appl. Comput. Harmon. Anal., 23 (2007), 74–113, arXiv: math.DG/0605009 | DOI | MR | Zbl
[25] Milnor J. W., The geometry of growth and form, Talk given at the IAS, , Princeton, 2010 http://www.math.sunysb.edu/ ̃ jack/gfp-print.pdf
[26] Mumford D., “Pattern theory and vision”, Questions Mathématiques En Traitement Du Signal et de L'Image, Chapter 3, Institute Henri Poincaré, Paris, 1998, 7–13
[27] O'Hara J., Solanes G., “Möbius invariant energies and average linking with circles”, Tohoku Math. J., 67 (2015), 51–82, arXiv: 1010.3764 | DOI | MR | Zbl
[28] Olver P. J., “Moving frames and singularities of prolonged group actions”, Selecta Math. (N.S.), 6 (2000), 41–77 | DOI | MR | Zbl
[29] Olver P. J., “Joint invariant signatures”, Found. Comput. Math., 1 (2001), 3–67 | DOI | MR | Zbl
[30] Olver P. J., “Moving frames – in geometry, algebra, computer vision, and numerical analysis”, Foundations of Computational Mathematics (Oxford, 1999), London Math. Soc. Lecture Note Ser., 284, Cambridge University Press, Cambridge, 2001, 267–297 | MR | Zbl
[31] Olver P. J., “A survey of moving frames”, Computer Algebra and Geometric Algebra with Applications, Lecture Notes in Computer Science, 3519, Springer, Berlin–Heidelberg, 2005, 105–138 | DOI | Zbl
[32] Olver P. J., “The symmetry groupoid and weighted signature of a geometric object”, J. Lie Theory, 26 (2016), 235–267 | MR | Zbl
[33] Patterson B. C., Amer. J. Math., 50 (1928), The differential invariants of inversive geometry | DOI | MR
[34] Petukhov S. V., “Non-Euclidean geometries and algorithms of living bodies”, Comput. Math. Appl., 17 (1989), 505–534 | DOI | MR | Zbl
[35] Shakiban C., Lloyd P., “Signature curves statistics of DNA supercoils”, Geometry, Integrability and Quantization, Softex, Sofia, 2004, 203–210 | MR | Zbl
[36] Shakiban C., Lloyd P., Computer Algebra and Geometric Algebra with Applications, Lecture Notes in Computer Science, 3519, Springer, Berlin–Heidelberg, 2005, Classification of signature curves using latent semantic analysis | DOI
[37] Taylor M. E., Noncommutative harmonic analysis, Mathematical Surveys and Monographs, 22, Amer. Math. Soc., Providence, RI, 1986 | DOI | MR | Zbl
[38] Thompson D. W., On growth and form, Cambridge University Press, Cambridge, England, 1942 | MR | Zbl
[39] Turski J., “Geometric Fourier analysis of the conformal camera for active vision”, SIAM Rev., 46 (2004), 230–255 | DOI | MR | Zbl
[40] Turski J., “Geometric Fourier analysis for computational vision”, J. Fourier Anal. Appl., 11 (2005), 1–23 | DOI | MR | Zbl
[41] Turski J., “Computational harmonic analysis for human and robotic vision systems”, Neurocomputing, 69 (2006), 1277–1280 | DOI
[42] Van Gool L., Moons T., Pauwels E., Oosterlinck A., “Vision and Lie's approach to invariance”, Image Vision Comput., 13 (1995), 259–277 | DOI
[43] Wallace A., “D'Arcy Thompson and the theory of transformations”, Nature Rev. Genet., 7 (2006), 401–406 | DOI