@article{SIGMA_2016_12_a78,
author = {Richard Chapling},
title = {A {Hypergeometric} {Integral} with {Applications} to the {Fundamental} {Solution} of {Laplace's} {Equation} on {Hyperspheres}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a78/}
}
TY - JOUR AU - Richard Chapling TI - A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a78/ LA - en ID - SIGMA_2016_12_a78 ER -
%0 Journal Article %A Richard Chapling %T A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a78/ %G en %F SIGMA_2016_12_a78
Richard Chapling. A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a78/
[1] Aubin T., Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl
[2] Cohl H. S., “Fundamental solution of Laplace's equation in hyperspherical geometry”, SIGMA, 7 (2011), 108, 14 pp., arXiv: 1108.3679 | DOI | MR | Zbl
[3] Cohl H. S., Kalnins E. G., “Fourier and Gegenbauer expansions for a fundamental solution of the Laplacian in the hyperboloid model of hyperbolic geometry”, J. Phys. A: Math. Theor., 45 (2012), 145206, 32 pp., arXiv: 1105.0386 | DOI | MR | Zbl
[4] Cohl H. S., Palmer R. M., “Fourier and Gegenbauer expansions for a fundamental solution of Laplace's equation in hyperspherical geometry”, SIGMA, 11 (2015), 015, 23 pp., arXiv: 1405.4847 | DOI | MR | Zbl
[5] Courant R., Hilbert D., Methods of mathematical physics, v. I, Interscience Publishers, Inc., New York, N.Y., 1953 | MR
[6] Dutka J., “The early history of the hypergeometric function”, Arch. Hist. Exact Sci., 31 (1984), 15–34 | DOI | MR | Zbl
[7] Euler L., “Specimen transformationis singularis serierum [E710]”, Nova Acta Academiae Scientarum Imperialis Petropolitinae, 12 (1801), 58–70; reprinted in: Opera Omnia, Ser. 1, 16:2 (1935), 41–55
[8] Gauss C. F., “Disquisitiones generales circa seriem infinitam $1 + \frac {\alpha \beta} {1 \cdot \gamma}x + \frac {\alpha (\alpha+1) \beta (\beta+1)} {1 \cdot 2 \cdot \gamma (\gamma+1)} xx + \text{etc.}$”, Commentationes societatis regiae scientiarum Gottingensis recentiores, 2 (1813), 1–46; reprinted in: Gesammelte Werke, v. 3, K. Gesellschaft der Wissenschaften, Göttingen, 1876, 123–163, 207–229
[9] Iliev B. Z., Handbook of normal frames and coordinates, Progress in Mathematical Physics, 42, Birkhäuser Verlag, Basel, 2006 | DOI | MR | Zbl
[10] Lee J. M., Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, 2nd ed., Springer, New York, 2013 | MR | Zbl
[11] Pringsheim A., Faber G., Molk J., Analyse Algébrique, v. II, Encyclopédie des sciences mathématiques, II, Gauthier-Villars, Paris, 1911
[12] Rainville E. D., “The contiguous function relations for ${}_pF_q$ with applications to Bateman's $J_n^{u,v}$ and Rice's $H_n(\zeta,p,v)$”, Bull. Amer. Math. Soc., 51 (1945), 714–723 | DOI | MR | Zbl
[13] Szmytkowski R., “Closed forms of the Green's function and the generalized Green's function for the Helmholtz operator on the $N$-dimensional unit sphere”, J. Phys. A: Math. Theor., 40 (2007), 995–1009 | DOI | MR | Zbl
[14] Vidūnas R., “Contiguous relations of hypergeometric series”, J. Comput. Appl. Math., 153 (2003), 507–519, arXiv: math.CA/0109222 | DOI | MR | Zbl
[15] Vorsselmann de Heer P. O. C., Specimen Inaugurale De Fractionibus Continuis, Altheer, 1833 http://eudml.org/doc/204259
[16] Yamasuge H., “Maximum principle for harmonic functions in Riemannian manifolds”, J. Inst. Polytech. Osaka City Univ. Ser. A, 8 (1957), 35–38 | MR | Zbl