@article{SIGMA_2016_12_a74,
author = {Kiran Kumar Behera and A. Sri Ranga and A. Swaminathan},
title = {Orthogonal {Polynomials} {Associated} with {Complementary} {Chain} {Sequences}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a74/}
}
TY - JOUR AU - Kiran Kumar Behera AU - A. Sri Ranga AU - A. Swaminathan TI - Orthogonal Polynomials Associated with Complementary Chain Sequences JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a74/ LA - en ID - SIGMA_2016_12_a74 ER -
%0 Journal Article %A Kiran Kumar Behera %A A. Sri Ranga %A A. Swaminathan %T Orthogonal Polynomials Associated with Complementary Chain Sequences %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a74/ %G en %F SIGMA_2016_12_a74
Kiran Kumar Behera; A. Sri Ranga; A. Swaminathan. Orthogonal Polynomials Associated with Complementary Chain Sequences. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a74/
[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[2] Bracciali C. F., Sri Ranga A., Swaminathan A., “Para-orthogonal polynomials on the unit circle satisfying three term recurrence formulas”, Appl. Numer. Math., 109 (2016), 19–40, arXiv: 1406.0719 | DOI | MR
[3] Castillo K., Costa M. S., Sri Ranga A., Veronese D. O., “A Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formula”, J. Approx. Theory, 184 (2014), 146–162, arXiv: 1309.0995 | DOI | MR | Zbl
[4] Castillo K., Marcellán F., Rivero J., “On co-polynomials on the real line”, J. Math. Anal. Appl., 427 (2015), 469–483 | DOI | MR | Zbl
[5] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl
[6] Costa M. S., Felix H. M., Sri Ranga A., “Orthogonal polynomials on the unit circle and chain sequences”, J. Approx. Theory, 173 (2013), 14–32 | DOI | MR | Zbl
[7] Delsarte P., Genin Y. V., “The split Levinson algorithm”, IEEE Trans. Acoust. Speech Signal Process., 34 (1986), 470–478 | DOI | MR
[8] Freud G., Orthogonal polynomials, Pergamon Press, Oxford, 1971
[9] Garza L., Hernández J., Marcellán F., “Spectral transformations of measures supported on the unit circle and the Szeg{ő} transformation”, Numer. Algorithms, 49 (2008), 169–185 | DOI | MR | Zbl
[10] Geronimus L. Ya., Orthogonal polynomials: Estimates, asymptotic formulas, and series of polynomials orthogonal on the unit circle and on an interval, Consultants Bureau, New York, 1961 | MR
[11] Golinskii L., “Quadrature formula and zeros of para-orthogonal polynomials on the unit circle”, Acta Math. Hungar., 96 (2002), 169–186 | DOI | MR | Zbl
[12] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[13] Jones W. B., Njåstad O., Thron W. J., “Continued fractions associated with trigonometric and other strong moment problems”, Constr. Approx., 2 (1986), 197–211 | DOI | MR | Zbl
[14] Jones W. B., Njåstad O., Thron W. J., “Schur fractions, {P}erron–{C}arathéodory fractions and {S}zeg{ő} polynomials, a survey”, Analytic Theory of Continued Fractions, II (Pitlochry/Aviemore, 1985), Lecture Notes in Math., 1199, Springer, Berlin, 1986, 127–158 | DOI | MR
[15] Jones W. B., Njåstad O., Thron W. J., “Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle”, Bull. London Math. Soc., 21 (1989), 113–152 | DOI | MR | Zbl
[16] Jones W. B., Thron W. J., Continued fractions. Analytic theory and applications, Encyclopedia of Mathematics and its Applications, 11, Addison-Wesley Publishing Co., Reading, Mass., 1980 | MR
[17] Lorentzen L., Waadeland H., Continued fractions, v. 1, Atlantis Studies in Mathematics for Engineering and Science, 1, Convergence theory, 2nd ed., Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008 | DOI | MR | Zbl
[18] Marcellán F., Dehesa J. S., Ronveaux A., “On orthogonal polynomials with perturbed recurrence relations”, J. Comput. Appl. Math., 30 (1990), 203–212 | DOI | MR | Zbl
[19] Ramanathan K. G., “Hypergeometric series and continued fractions”, Proc. Indian Acad. Sci. Math. Sci., 97 (1987), 277–296 | DOI | MR | Zbl
[20] Rønning F., “P{C}-fractions and {S}zeg{ő} polynomials associated with starlike univalent functions”, Numer. Algorithms, 3 (1992), 383–391 | DOI | MR
[21] Rønning F., “A {S}zeg{ő} quadrature formula arising from $q$-starlike functions”, Continued Fractions and Orthogonal Functions (Loen, 1992), Lecture Notes in Pure and Appl. Math., 154, Dekker, New York, 1994, 345–352
[22] Simon B., Orthogonal polynomials on the unit circle, v. 1, American Mathematical Society Colloquium Publications, 54, Classical theory, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[23] Simon B., Orthogonal polynomials on the unit circle, v. 2, American Mathematical Society Colloquium Publications, 54, Spectral theory, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[24] Sri Ranga A., “Szeg{ő} polynomials from hypergeometric functions”, Proc. Amer. Math. Soc., 138 (2010), 4259–4270 | DOI | MR | Zbl
[25] Szeg{ő} G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975
[26] Wall H. S., Analytic theory of continued fractions, D. Van Nostrand Company, Inc., New York, NY, 1948 | MR | Zbl
[27] Wong M. L., “First and second kind paraorthogonal polynomials and their zeros”, J. Approx. Theory, 146 (2007), 282–293, arXiv: math.CA/0703242 | DOI | MR | Zbl