Orthogonal Polynomials Associated with Complementary Chain Sequences
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the minimal parameter sequence of a given chain sequence, we introduce the concept of complementary chain sequences, which we view as perturbations of chain sequences. Using the relation between these complementary chain sequences and the corresponding Verblunsky coefficients, the para-orthogonal polynomials and the associated Szegő polynomials are analyzed. Two illustrations, one involving Gaussian hypergeometric functions and the other involving Carathéodory functions are also provided. A connection between these two illustrations by means of complementary chain sequences is also observed.
Keywords: chain sequences; orthogonal polynomials; recurrence relation; Verblunsky coefficients; continued fractions; Carathéodory functions; hypergeometric functions.
@article{SIGMA_2016_12_a74,
     author = {Kiran Kumar Behera and A. Sri Ranga and A. Swaminathan},
     title = {Orthogonal {Polynomials} {Associated} with {Complementary} {Chain} {Sequences}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a74/}
}
TY  - JOUR
AU  - Kiran Kumar Behera
AU  - A. Sri Ranga
AU  - A. Swaminathan
TI  - Orthogonal Polynomials Associated with Complementary Chain Sequences
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a74/
LA  - en
ID  - SIGMA_2016_12_a74
ER  - 
%0 Journal Article
%A Kiran Kumar Behera
%A A. Sri Ranga
%A A. Swaminathan
%T Orthogonal Polynomials Associated with Complementary Chain Sequences
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a74/
%G en
%F SIGMA_2016_12_a74
Kiran Kumar Behera; A. Sri Ranga; A. Swaminathan. Orthogonal Polynomials Associated with Complementary Chain Sequences. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a74/

[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[2] Bracciali C. F., Sri Ranga A., Swaminathan A., “Para-orthogonal polynomials on the unit circle satisfying three term recurrence formulas”, Appl. Numer. Math., 109 (2016), 19–40, arXiv: 1406.0719 | DOI | MR

[3] Castillo K., Costa M. S., Sri Ranga A., Veronese D. O., “A Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formula”, J. Approx. Theory, 184 (2014), 146–162, arXiv: 1309.0995 | DOI | MR | Zbl

[4] Castillo K., Marcellán F., Rivero J., “On co-polynomials on the real line”, J. Math. Anal. Appl., 427 (2015), 469–483 | DOI | MR | Zbl

[5] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl

[6] Costa M. S., Felix H. M., Sri Ranga A., “Orthogonal polynomials on the unit circle and chain sequences”, J. Approx. Theory, 173 (2013), 14–32 | DOI | MR | Zbl

[7] Delsarte P., Genin Y. V., “The split Levinson algorithm”, IEEE Trans. Acoust. Speech Signal Process., 34 (1986), 470–478 | DOI | MR

[8] Freud G., Orthogonal polynomials, Pergamon Press, Oxford, 1971

[9] Garza L., Hernández J., Marcellán F., “Spectral transformations of measures supported on the unit circle and the Szeg{ő} transformation”, Numer. Algorithms, 49 (2008), 169–185 | DOI | MR | Zbl

[10] Geronimus L. Ya., Orthogonal polynomials: Estimates, asymptotic formulas, and series of polynomials orthogonal on the unit circle and on an interval, Consultants Bureau, New York, 1961 | MR

[11] Golinskii L., “Quadrature formula and zeros of para-orthogonal polynomials on the unit circle”, Acta Math. Hungar., 96 (2002), 169–186 | DOI | MR | Zbl

[12] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[13] Jones W. B., Njåstad O., Thron W. J., “Continued fractions associated with trigonometric and other strong moment problems”, Constr. Approx., 2 (1986), 197–211 | DOI | MR | Zbl

[14] Jones W. B., Njåstad O., Thron W. J., “Schur fractions, {P}erron–{C}arathéodory fractions and {S}zeg{ő} polynomials, a survey”, Analytic Theory of Continued Fractions, II (Pitlochry/Aviemore, 1985), Lecture Notes in Math., 1199, Springer, Berlin, 1986, 127–158 | DOI | MR

[15] Jones W. B., Njåstad O., Thron W. J., “Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle”, Bull. London Math. Soc., 21 (1989), 113–152 | DOI | MR | Zbl

[16] Jones W. B., Thron W. J., Continued fractions. Analytic theory and applications, Encyclopedia of Mathematics and its Applications, 11, Addison-Wesley Publishing Co., Reading, Mass., 1980 | MR

[17] Lorentzen L., Waadeland H., Continued fractions, v. 1, Atlantis Studies in Mathematics for Engineering and Science, 1, Convergence theory, 2nd ed., Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008 | DOI | MR | Zbl

[18] Marcellán F., Dehesa J. S., Ronveaux A., “On orthogonal polynomials with perturbed recurrence relations”, J. Comput. Appl. Math., 30 (1990), 203–212 | DOI | MR | Zbl

[19] Ramanathan K. G., “Hypergeometric series and continued fractions”, Proc. Indian Acad. Sci. Math. Sci., 97 (1987), 277–296 | DOI | MR | Zbl

[20] Rønning F., “P{C}-fractions and {S}zeg{ő} polynomials associated with starlike univalent functions”, Numer. Algorithms, 3 (1992), 383–391 | DOI | MR

[21] Rønning F., “A {S}zeg{ő} quadrature formula arising from $q$-starlike functions”, Continued Fractions and Orthogonal Functions (Loen, 1992), Lecture Notes in Pure and Appl. Math., 154, Dekker, New York, 1994, 345–352

[22] Simon B., Orthogonal polynomials on the unit circle, v. 1, American Mathematical Society Colloquium Publications, 54, Classical theory, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[23] Simon B., Orthogonal polynomials on the unit circle, v. 2, American Mathematical Society Colloquium Publications, 54, Spectral theory, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[24] Sri Ranga A., “Szeg{ő} polynomials from hypergeometric functions”, Proc. Amer. Math. Soc., 138 (2010), 4259–4270 | DOI | MR | Zbl

[25] Szeg{ő} G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975

[26] Wall H. S., Analytic theory of continued fractions, D. Van Nostrand Company, Inc., New York, NY, 1948 | MR | Zbl

[27] Wong M. L., “First and second kind paraorthogonal polynomials and their zeros”, J. Approx. Theory, 146 (2007), 282–293, arXiv: math.CA/0703242 | DOI | MR | Zbl