@article{SIGMA_2016_12_a73,
author = {Patrik L. Ferrari and Herbert Spohn},
title = {On {Time} {Correlations} for {KPZ} {Growth} in {One} {Dimension}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a73/}
}
Patrik L. Ferrari; Herbert Spohn. On Time Correlations for KPZ Growth in One Dimension. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a73/
[1] Baik J., Ferrari P. L., Péché S. \, “Limit process of stationary {TASEP} near the characteristic line”, Comm. Pure Appl. Math., 63 (2010), 1017–1070, arXiv: 0907.0226 | DOI | MR | Zbl
[2] Baik J., Liechty K., Schehr G., “On the joint distribution of the maximum and its position of the ${\rm Airy}_2$ process minus a parabola”, J. Math. Phys., 53 (2012), 083303, 13 pp., arXiv: 1205.3665 | DOI | MR | Zbl
[3] Baik J., Rains E. M., “Limiting distributions for a polynuclear growth model with external sources”, J. Stat. Phys., 100 (2000), 523–541, arXiv: math.PR/0003130 | DOI | MR | Zbl
[4] Baik J., Rains E. M., “The asymptotics of monotone subsequences of involutions”, Duke Math. J., 109 (2001), 205–281, arXiv: math.CO/9905084 | DOI | MR | Zbl
[5] Basu R., Sidoravicius V., Sly A., Last passage percolation with a defect line and the solution of the slow bond problem, arXiv: 1408.3464
[6] Bornemann F., Ferrari P. L., Prähofer M., “The ${\rm Airy}_1$ process is not the limit of the largest eigenvalue in GOE matrix diffusion”, J. Stat. Phys., 133 (2008), 405–415, arXiv: 0806.3410 | DOI | MR | Zbl
[7] Borodin A., Corwin I., Ferrari P., Vet{ő} B., Height fluctuations for the stationary KPZ equation, Math. Phys. Anal. Geom., 18, 2015, 95 pp., arXiv: 1407.6977 | DOI | MR | Zbl
[8] Borodin A., Ferrari P. L., “Large time asymptotics of growth models on space-like paths. I: PushASEP”, Electron. J. Probab., 13:50 (2008), 1380–1418, arXiv: 0707.2813 | DOI | MR | Zbl
[9] Borodin A., Ferrari P. L., Prähofer M., Sasamoto T., “Fluctuation properties of the TASEP with periodic initial configuration”, J. Stat. Phys., 129 (2007), 1055–1080, arXiv: math-ph/0608056 | DOI | MR | Zbl
[10] Borodin A., Gorin V., Lectures on integrable probability, arXiv: 1212.3351
[11] Burke P. J., “The output of a queuing system”, Operations Res., 4 (1956), 699–704 | DOI | MR
[12] Chang C.-C., “Equilibrium fluctuations of gradient reversible particle systems”, Probab. Theory Related Fields, 100 (1994), 269–283 | DOI | MR | Zbl
[13] Chang C.-C., “Equilibrium fluctuations of nongradient reversible particle systems”, Nonlinear Stochastic PDEs (Minneapolis, MN, 1994), IMA Vol. Math. Appl., 77, Springer, New York, 1996, 41–51 | DOI | MR | Zbl
[14] Corwin I., “The Kardar–Parisi–Zhang equation and universality class”, Random Matrices Theory Appl., 1 (2012), 1130001, 76 pp., arXiv: 1106.1596 | DOI | MR | Zbl
[15] Corwin I., Ferrari P. L., Péché S., “Limit processes for TASEP with shocks and rarefaction fans”, J. Stat. Phys., 140 (2010), 232–267, arXiv: 1002.3476 | DOI | MR | Zbl
[16] Corwin I., Ferrari P. L., Péché S., “Universality of slow decorrelation in KPZ growth”, Ann. Inst. Henri Poincaré Probab. Stat., 48 (2012), 134–150, arXiv: 1001.5345 | DOI | MR | Zbl
[17] Corwin I., Hammond A., “Brownian Gibbs property for Airy line ensembles”, Invent. Math., 195 (2014), 441–508, arXiv: 1108.2291 | DOI | MR | Zbl
[18] Corwin I., Hammond A., Private communication, 2016
[19] De Masi A., Ferrari P. A., “Flux fluctuations in the one dimensional nearest neighbors symmetric simple exclusion process”, J. Stat. Phys., 107 (2002), 677–683, arXiv: math.PR/0103233 | DOI | MR | Zbl
[20] Dotsenko V., “Two-time free energy distribution function in $(1+1)$ directed polymers”, J. Stat. Mech. Theory Exp., 2013 (2013), P06017, 23 pp., arXiv: 1304.0626 | DOI | MR
[21] Dotsenko V., “On two-time distribution functions in $(1+1)$ random directed polymers”, J. Phys. A: Math. Theor., 49 (2016), 27LT01, 8 pp., arXiv: 1603.08945 | DOI | Zbl
[22] Ferrari P. L., “Slow decorrelations in Kardar–Parisi–Zhang growth”, J. Stat. Mech. Theory Exp., 2008 (2008), P07022, 18 pp., arXiv: 0806.1350 | DOI
[23] Ferrari P. L., “The universal ${\rm Airy}_1$ and ${\rm Airy}_2$ processes in the totally asymmetric simple exclusion process”, Integrable Systems and Random Matrices: in Honor of Percy Deift, Contemp. Math., 458, eds. J. Baik, T. Kriecherbauer, L.-C. Li, K. D. T.-R. McLaughlin, C. Tomei, Amer. Math. Soc., Providence, RI, 2008, 321–332, arXiv: math-ph/0701021 | DOI | MR | Zbl
[24] Ferrari P. L., Frings R., “Finite time corrections in KPZ growth models”, J. Stat. Phys., 144 (2011), 1123–1150, arXiv: 1104.2129 | DOI | MR | Zbl
[25] Ferrari P. L., Spohn H., “Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process”, Comm. Math. Phys., 265 (2006), 1–44, arXiv: math-ph/0504041 | DOI | MR | Zbl
[26] Ferrari P. L., Spohn H., “Random growth models”, The Oxford Handbook of Random Matrix Theory, eds. G. Akemann, J. Baik, P. Di Francesco, Oxford University Press, Oxford, 2011, 782–801, arXiv: 1003.0881 | MR | Zbl
[27] Ferrari P. L., Spohn H., Weiss T., “Brownian motions with one-sided collisions: the stationary case”, Electron. J. Probab., 20:69 (2015), 41 pp., arXiv: 1502.01468 | DOI | MR
[28] Hägg J., “Local Gaussian fluctuations in the Airy and discrete PNG processes”, Ann. Probab., 36 (2008), 1059–1092, arXiv: math.PR/0701880 | DOI | MR
[29] Imamura T., Sasamoto T., “Polynuclear growth model with external source and random matrix model with deterministic source”, Phys. Rev. E, 71 (2005), 041606, 12 pp., arXiv: math-ph/0411057 | DOI
[30] Johansson K., “Shape fluctuations and random matrices”, Comm. Math. Phys., 209 (2000), 437–476, arXiv: math.CO/9903134 | DOI | MR | Zbl
[31] Johansson K., “Transversal fluctuations for increasing subsequences on the plane”, Probab. Theory Related Fields, 116 (2000), 445–456, arXiv: math.PR/9910146 | DOI | MR | Zbl
[32] Johansson K., “Discrete polynuclear growth and determinantal processes”, Comm. Math. Phys., 242 (2003), 277–329, arXiv: math.PR/0206208 | DOI | MR | Zbl
[33] Johansson K., “Two time distribution in Brownian directed percolation”, Comm. Math. Phys. (to appear) , arXiv: 1502.00941 | DOI
[34] Kallabis H., Krug J., “Persistence of Kardar–Parisi–Zhang interfaces”, Europhys. Lett., 45 (1999), 20–25, arXiv: cond-mat/9809241 | DOI
[35] Kardar M., Parisi G., Zhang Y.-C., “Dynamic scaling of growing interfaces”, Phys. Rev. Lett., 56 (1986), 889–892 | DOI | Zbl
[36] Krug J., Meakin P., Halpin-Healy T., “Amplitude universality for driven interfaces and directed polymers in random media”, Phys. Rev. A, 45 (1992), 638–653 | DOI
[37] Moreno Flores G., Quastel J., Remenik D., “Endpoint distribution of directed polymers in $1+1$ dimensions”, Comm. Math. Phys., 317 (2013), 363–380, arXiv: 1106.2716 | DOI | MR | Zbl
[38] Peligrad M., Sethuraman S., “On fractional Brownian motion limits in one dimensional nearest-neighbor symmetric simple exclusion”, ALEA Lat. Am. J. Probab. Math. Stat., 4 (2008), 245–255, arXiv: 0711.0017 | MR | Zbl
[39] Prähofer M., Spohn H., “Scale invariance of the PNG droplet and the Airy process”, J. Stat. Phys., 108 (2002), 1071–1106, arXiv: math.PR/0105240 | DOI | MR
[40] Prähofer M., Spohn H., “Exact scaling functions for one-dimensional stationary KPZ growth”, J. Stat. Phys., 115 (2004), 255–279, arXiv: cond-mat/0212519 | DOI | MR
[41] Quastel J., “Introduction to KPZ”, Current Developments in Mathematics, Int. Press, Somerville, MA, 2012, 125–194 | MR | Zbl
[42] Quastel J., Remenik D., “Local behavior and hitting probabilities of the $\text{Airy}_1$ process”, Probab. Theory Related Fields, 157 (2013), 605–634, arXiv: 1201.4709 | DOI | MR | Zbl
[43] Quastel J., Remenik D., “Airy processes and variational problems”, Topics in Percolative and Disordered Systems, Springer Proc. Math. Stat., 69, Springer, New York, 2014, 121–171, arXiv: 1301.0750 | DOI | MR | Zbl
[44] Quastel J., Spohn H., “The one-dimensional KPZ equation and its universality class”, J. Stat. Phys., 160 (2015), 965–984, arXiv: 1503.06185 | DOI | MR | Zbl
[45] Sasamoto T., “Spatial correlations of the 1D KPZ surface on a flat substrate”, J. Phys. A: Math. Gen., 38 (2005), L549–L556, arXiv: cond-mat/0504417 | DOI | MR
[46] Schehr G., “Extremes of $N$ vicious walkers for large $N$: application to the directed polymer and KPZ interfaces”, J. Stat. Phys., 149 (2012), 385–410, arXiv: 1203.1658 | DOI | MR | Zbl
[47] Singha S. B., “Persistence of surface fluctuations in radially growing surface”, J. Stat. Mech. Theory Exp., 2005 (2005), P08006, 17 pp. | DOI
[48] Takeuchi K. A., “Statistics of circular interface fluctuations in an off-lattice Eden model”, J. Stat. Mech. Theory Exp., 2012 (2012), P05007, 17 pp., arXiv: 1203.2483 | DOI
[49] Takeuchi K. A., “Crossover from growing to stationary interfaces in the Kardar–Parisi–Zhang class”, Phys. Rev. Lett., 110 (2013), 210604, 5 pp., arXiv: 1301.5081 | DOI
[50] Takeuchi K. A., Sano M., “Evidence for geometry-dependent universal fluctuations of the Kardar–Parisi–Zhang interfaces in liquid-crystal turbulence”, J. Stat. Phys., 147 (2012), 853–890, arXiv: 1203.2530 | DOI | Zbl