@article{SIGMA_2016_12_a72,
author = {Valentin Bonzom},
title = {Large $N$ {Limits} in {Tensor} {Models:} {Towards} {More} {Universality} {Classes} of {Colored} {Triangulations} in {Dimension} $d\geq 2$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a72/}
}
TY - JOUR AU - Valentin Bonzom TI - Large $N$ Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension $d\geq 2$ JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a72/ LA - en ID - SIGMA_2016_12_a72 ER -
%0 Journal Article %A Valentin Bonzom %T Large $N$ Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension $d\geq 2$ %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a72/ %G en %F SIGMA_2016_12_a72
Valentin Bonzom. Large $N$ Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension $d\geq 2$. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a72/
[1] Alvarez-Gaumé L., Barbón J. L. F., Crnković Č., “A proposal for strings at $D>1$”, Nuclear Phys. B, 394 (1993), 383–422, arXiv: hep-th/9208026 | DOI | MR
[2] Ambjørn J., Durhuus B., Jónsson T., “Three-dimensional simplicial quantum gravity and generalized matrix models”, Modern Phys. Lett. A, 6 (1991), 1133–1146 | DOI | MR | Zbl
[3] Baratin A., Carrozza S., Oriti D., Ryan J., Smerlak M., “Melonic phase transition in group field theory”, Lett. Math. Phys., 104 (2014), 1003–1017, arXiv: 1307.5026 | DOI | MR | Zbl
[4] Barbón J. L. F., Demeterfi K., Klebanov I. R., Schmidhuber C., “Correlation functions in matrix models modified by wormhole terms”, Nuclear Phys. B, 440 (1995), 189–214, arXiv: hep-th/9501058 | DOI | MR | Zbl
[5] Ben Geloun J., “Two- and four-loop $\beta$-functions of rank-4 renormalizable tensor field theories”, Classical Quantum Gravity, 29 (2012), 235011, 40 pp., arXiv: 1205.5513 | DOI | MR | Zbl
[6] Ben Geloun J., Ramgoolam S., “Counting tensor model observables and branched covers of the 2-sphere”, Ann. Inst. Henri Poincaré D, 1 (2014), 77–138, arXiv: 1307.6490 | DOI | MR | Zbl
[7] Ben Geloun J., Rivasseau V., “A renormalizable 4-dimensional tensor field theory”, Comm. Math. Phys., 318 (2013), 69–109, arXiv: 1111.4997 | DOI | MR | Zbl
[8] Bonzom V., “New $1/N$ expansions in random tensor models”, J. High Energy Phys., 2013:6 (2013), 062, 25 pp., arXiv: 1211.1657 | DOI | MR | Zbl
[9] Bonzom V., “Revisiting random tensor models at large $N$ via the Schwinger–Dyson equations”, J. High Energy Phys., 2013:3 (2013), 160, 25 pp., arXiv: 1208.6216 | DOI | MR | Zbl
[10] Bonzom V., Delepouve T., Rivasseau V., “Enhancing non-melonic triangulations: a tensor model mixing melonic and planar maps”, Nuclear Phys. B, 895 (2015), 161–191, arXiv: 1502.01365 | DOI | MR | Zbl
[11] Bonzom V., Gurau R., Riello A., Rivasseau V., “Critical behavior of colored tensor models in the large $N$ limit”, Nuclear Phys. B, 853 (2011), 174–195, arXiv: 1105.3122 | DOI | MR | Zbl
[12] Bonzom V., Gurau R., Rivasseau V., “Random tensor models in the large $N$ limit: uncoloring the colored tensor models”, Phys. Rev. D, 85 (2012), 084037, 12 pp., arXiv: 1202.3637 | DOI | MR
[13] Bonzom V., Gurau R., Ryan J. P., Tanasa A., “The double scaling limit of random tensor models”, J. High Energy Phys., 2014:9 (2014), 051, 49 pp., arXiv: 1404.7517 | DOI | MR | Zbl
[14] Bonzom V., Lionni L., Rivasseau V., Colored triangulations of arbitrary dimensions are stuffed Walsh maps, arXiv: 1508.03805
[15] Carrozza S., Oriti D., Rivasseau V., “Renormalization of a ${\rm SU}(2)$ tensorial group field theory in three dimensions”, Comm. Math. Phys., 330 (2014), 581–637, arXiv: 1303.6772 | DOI | MR | Zbl
[16] Carrozza S., Oriti D., Rivasseau V., “Renormalization of tensorial group field theories: Abelian ${\rm U}(1)$ models in four dimensions”, Comm. Math. Phys., 327 (2014), 603–641, arXiv: 1207.6734 | DOI | MR | Zbl
[17] Carrozza S., Tanasa A., ${\rm O}(N)$ random tensor models, arXiv: 1512.06718
[18] Dartois S., “A Givental-like formula and bilinear identities for tensor models”, J. High Energy Phys., 2015:8 (2015), 129, 19 pp., arXiv: 1409.5621 | DOI | MR
[19] Das S. R., Dhar A., Sengupta A. M., Wadia S. R., “New critical behavior in $d=0$ large-$N$ matrix models”, Modern Phys. Lett. A, 5 (1990), 1041–1056 | DOI | MR | Zbl
[20] Delepouve T., Gurau R., Rivasseau V., “Universality and Borel summability of arbitrary quartic tensor models”, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), 821–848, arXiv: 1403.0170 | DOI | MR | Zbl
[21] Di Francesco P., Ginsparg P., Zinn-Justin J., “$2$D gravity and random matrices”, Phys. Rep., 254 (1995), 133, arXiv: hep-th/9306153 | DOI | MR
[22] Eynard B., “Topological expansion for the 1-Hermitian matrix model correlation functions”, J. High Energy Phys., 2004:11 (2004), 031, 35 pp., arXiv: hep-th/0407261 | DOI | MR
[23] Ferri M., Gagliardi C., “Crystallisation moves”, Pacific J. Math., 100 (1982), 85–103 | DOI | MR | Zbl
[24] Flajolet P., Sedgewick R., Analytic combinatorics, Cambridge University Press, Cambridge, 2009 | DOI | MR | Zbl
[25] Goulden I. P., Jackson D. M., Combinatorial enumeration, A Wiley-Interscience Publication, John Wiley Sons, Inc., New York, 1983 | MR | Zbl
[26] Gross M., “Tensor models and simplicial quantum gravity in $>2-D$”, Nuclear Phys. B Proc. Suppl., 25A (1992), 144–149 | DOI | MR | Zbl
[27] Gurau R., “Lost in translation: topological singularities in group field theory”, Classical Quantum Gravity, 27 (2010), 235023, 20 pp., arXiv: 1006.0714 | DOI | MR | Zbl
[28] Gurau R., “The $1/N$ expansion of colored tensor models”, Ann. Henri Poincaré, 12 (2011), 829–847, arXiv: 1011.2726 | DOI | MR | Zbl
[29] Gurau R., “A generalization of the Virasoro algebra to arbitrary dimensions”, Nuclear Phys. B, 852 (2011), 592–614, arXiv: 1105.6072 | DOI | MR | Zbl
[30] Gurau R., “Reply to comment on ‘Lost in translation: topological singularities in group field theory’”, Classical Quantum Gravity, 28 (2011), 178002, 2 pp., arXiv: 1108.4966 | DOI | MR | Zbl
[31] Gurau R., “The complete $1/N$ expansion of colored tensor models in arbitrary dimension”, Ann. Henri Poincaré, 13 (2012), 399–423, arXiv: 1102.5759 | DOI | MR | Zbl
[32] Gurau R., “The Schwinger–Dyson equations and the algebra of constraints of random tensor models at all orders”, Nuclear Phys. B, 865 (2012), 133–147, arXiv: 1203.4965 | DOI | MR | Zbl
[33] Gurau R., “The $1/N$ expansion of tensor models beyond perturbation theory”, Comm. Math. Phys., 330 (2014), 973–1019, arXiv: 1304.2666 | DOI | MR | Zbl
[34] Gurau R., “Universality for random tensors”, Ann. Inst. Henri Poincaré Probab. Stat., 50 (2014), 1474–1525, arXiv: 1111.0519 | DOI | MR | Zbl
[35] Gurau R., Krajewski T., “Analyticity results for the cumulants in a random matrix model”, Ann. Inst. Henri Poincaré D, 2 (2015), 169–228, arXiv: 1409.1705 | DOI | MR | Zbl
[36] Gurau R., Rivasseau V., “The $1/N$ expansion of colored tensor models in arbitrary dimension”, Europhys. Lett., 95 (2011), 50004, 5 pp., arXiv: 1101.4182 | DOI | MR
[37] Gurau R., Ryan J. P., “Colored tensor models — a review”, SIGMA, 8 (2012), 020, 78 pp., arXiv: 1109.4812 | DOI | MR | Zbl
[38] Gurau R., Ryan J. P., “Melons are branched polymers”, Ann. Henri Poincaré, 15 (2014), 2085–2131, arXiv: 1302.4386 | DOI | MR | Zbl
[39] Gurau R., Schaeffer G., Regular colored graphs of positive degree, arXiv: 1307.5279
[40] Kaminski W., Oriti D., Ryan J. P., “Towards a double-scaling limit for tensor models: probing sub-dominant orders”, New J. Phys., 16 (2014), 063048, 36 pp., arXiv: 1304.6934 | DOI
[41] Klebanov I. R., Hashimoto A., “Non-perturbative solution of matrix models modified by trace-squared terms”, Nuclear Phys. B, 434 (1995), 264–282, arXiv: hep-th/9409064 | DOI | MR | Zbl
[42] Korchemsky G. P., “Loops in the curvature matrix model”, Phys. Lett. B, 296 (1992), 323–334, arXiv: hep-th/9206088 | DOI | MR
[43] Lahoche V., Oriti D., Rivasseau V., “Renormalization of an Abelian tensor group field theory: solution at leading order”, J. High Energy Phys., 2015:4 (2015), 095, 41 pp., arXiv: 1501.02086 | DOI | MR
[44] Lins S., Gems, computers and attractors for $3$-manifolds, Series on Knots and Everything, 5, World Scientific Publishing Co., Inc., River Edge, NJ, 1995 | DOI | MR | Zbl
[45] Nguyen V. A., Dartois S., Eynard B., “An analysis of the intermediate field theory of $T^4$ tensor model”, J. High Energy Phys., 2015:1 (2015), 013, 17 pp., arXiv: 1409.5751 | DOI
[46] Sasakura N., “Tensor model for gravity and orientability of manifold”, Modern Phys. Lett. A, 6 (1991), 2613–2623 | DOI | MR | Zbl
[47] Smerlak M., “Comment on ‘Lost in translation: topological singularities in group field theory’”, Classical Quantum Gravity, 28 (2011), 178001, 3 pp., arXiv: 1102.1844 | DOI | MR | Zbl
[48] Tanasa A., “The multi-orientable random tensor model, a review”, SIGMA, 12 (2016), 056, 23 pp., arXiv: 1512.02087 | DOI | MR | Zbl
[49] Walsh T. R. S., “Hypermaps versus bipartite maps”, J. Combinatorial Theory Ser. B, 18 (1975), 155–163 | DOI | MR | Zbl