Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A matrix-valued measure $\Theta$ reduces to measures of smaller size if there exists a constant invertible matrix $M$ such that $M\Theta M^*$ is block diagonal. Equivalently, the real vector space $\mathcal{A}$ of all matrices $T$ such that $T\Theta(X)=\Theta(X) T^*$ for any Borel set $X$ is non-trivial. If the subspace $A_h$ of self-adjoints elements in the commutant algebra $A$ of $\Theta$ is non-trivial, then $\Theta$ is reducible via a unitary matrix. In this paper we prove that $\mathcal{A}$ is $*$-invariant if and only if $A_h=\mathcal{A}$, i.e., every reduction of $\Theta$ can be performed via a unitary matrix. The motivation for this paper comes from families of matrix-valued polynomials related to the group $\mathrm{SU(2)}\times \mathrm{SU(2)}$ and its quantum analogue. In both cases the commutant algebra $A=A_h\oplus iA_h$ is of dimension two and the matrix-valued measures reduce unitarily into a $2\times 2$ block diagonal matrix. Here we show that there is no further non-unitary reduction.
Keywords: matrix-valued measures; reducibility; matrix-valued orthogonal polynomials.
@article{SIGMA_2016_12_a7,
     author = {Erik Koelink and Pablo Rom\'an},
     title = {Orthogonal vs. {Non-Orthogonal} {Reducibility} of {Matrix-Valued} {Measures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a7/}
}
TY  - JOUR
AU  - Erik Koelink
AU  - Pablo Román
TI  - Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a7/
LA  - en
ID  - SIGMA_2016_12_a7
ER  - 
%0 Journal Article
%A Erik Koelink
%A Pablo Román
%T Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a7/
%G en
%F SIGMA_2016_12_a7
Erik Koelink; Pablo Román. Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a7/

[1] Aldenhoven N., Koelink E., de los Ríos A. M., “Matrix-valued little $q$-Jacobi polynomials”, J. Approx. Theory, 193 (2015), 164–183, arXiv: 1308.2540 | DOI | MR | Zbl

[2] Aldenhoven N., Koelink E., Román P., Matrix-valued orthogonal polynomials for the quantum analogue of $({\rm SU}(2)\times{\rm SU}(2), \mathrm{diag})$, arXiv: 1507.03426

[3] Álvarez-Nodarse R., Durán A. J., de los Ríos A. M., “Orthogonal matrix polynomials satisfying second order difference equations”, J. Approx. Theory, 169 (2013), 40–55 | DOI | MR

[4] Berg C., “The matrix moment problem”, Coimbra Lecture Notes on Orthogonal Polynomials, eds. A. Branquinho, A. Foulquié Moreno, Nova Sci. Publ., New York, 2008, 1–57

[5] Damanik D., Pushnitski A., Simon B., “The analytic theory of matrix orthogonal polynomials”, Surv. Approx. Theory, 4 (2008), 1–85, arXiv: 0711.2703 | MR | Zbl

[6] Grünbaum F. A., Tirao J., “The algebra of differential operators associated to a weight matrix”, Integral Equations Operator Theory, 58 (2007), 449–475 | DOI | MR

[7] Heckman G., van Pruijssen M., “Matrix-valued orthogonal polynomials for Gelfand pairs of rank one”, Tohoku Math. J. (to appear) , arXiv: 1310.5134

[8] Horn R. A., Johnson C. R., Matrix analysis, Cambridge University Press, Cambridge, 1985 | DOI | MR | Zbl

[9] Koelink E., de los Ríos A. M., Román P., Matrix-valued Gegenbauer polynomials, arXiv: 1403.2938

[10] Koelink E., van Pruijssen M., Román P., “Matrix-valued orthogonal polynomials related to $({\rm SU}(2)\times{\rm SU}(2),{\rm diag})$”, Int. Math. Res. Not., 2012 (2012), 5673–5730, arXiv: 1012.2719 | DOI | MR | Zbl

[11] Koelink E., van Pruijssen M., Román P., “Matrix-valued orthogonal polynomials related to $({\rm SU}(2)\times{\rm SU}(2),{\rm diag})$, II”, Publ. Res. Inst. Math. Sci., 49 (2013), 271–312, arXiv: 1203.0041 | DOI | MR | Zbl

[12] Tirao J., Zurrián I., Reducibility of matrix weights, arXiv: 1501.04059