Flowing in Group Field Theory Space: a Review
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide a non-technical overview of recent extensions of renormalization methods and techniques to Group Field Theories (GFTs), a class of combinatorially non-local quantum field theories which generalize matrix models to dimension $d \geq 3$. More precisely, we focus on GFTs with so-called closure constraint, which are closely related to lattice gauge theories and quantum gravity spin foam models. With the help of recent tensor model tools, a rich landscape of renormalizable theories has been unravelled. We review our current understanding of their renormalization group flows, at both perturbative and non-perturbative levels.
Keywords: group field theory; quantum gravity; quantum field theory; renormalization.
@article{SIGMA_2016_12_a69,
     author = {Sylvain Carrozza},
     title = {Flowing in {Group} {Field} {Theory} {Space:} a {Review}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a69/}
}
TY  - JOUR
AU  - Sylvain Carrozza
TI  - Flowing in Group Field Theory Space: a Review
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a69/
LA  - en
ID  - SIGMA_2016_12_a69
ER  - 
%0 Journal Article
%A Sylvain Carrozza
%T Flowing in Group Field Theory Space: a Review
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a69/
%G en
%F SIGMA_2016_12_a69
Sylvain Carrozza. Flowing in Group Field Theory Space: a Review. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a69/

[1] Alexandrov S., Geiller M., Noui K., “Spin foams and canonical quantization”, SIGMA, 8 (2012), 055, 79 pp., arXiv: 1112.1961 | DOI | MR | Zbl

[2] Ashtekar A., Lewandowski J., “Differential geometry on the space of connections via graphs and projective limits”, J. Geom. Phys., 17 (1995), 191–230, arXiv: hep-th/9412073 | DOI | MR | Zbl

[3] Bagnuls C., Bervillier C., “Exact renormalization group equations: an introductory review”, Phys. Rep., 348 (2001), 91–157, arXiv: hep-th/0002034 | DOI | MR | Zbl

[4] Bahr B., On background-independent renormalization of spin foam models, arXiv: 1407.7746

[5] Baratin A., Carrozza S., Oriti D., Ryan J., Smerlak M., “Melonic phase transition in group field theory”, Lett. Math. Phys., 104 (2014), 1003–1017, arXiv: 1307.5026 | DOI | MR | Zbl

[6] Baratin A., Girelli F., Oriti D., “Diffeomorphisms in group field theories”, Phys. Rev. D, 83 (2011), 104051, 22 pp., arXiv: 1101.0590 | DOI

[7] Baratin A., Oriti D., “Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett–Crane model”, New J. Phys., 13 (2011), 125011, 28 pp., arXiv: 1108.1178 | DOI

[8] Baratin A., Oriti D., “Group field theory and simplicial gravity path integrals: a model for Holst–Plebanski gravity”, Phys. Rev. D, 85 (2012), 044003, 15 pp., arXiv: 1111.5842 | DOI

[9] Baratin A., Oriti D., “Ten questions on group field theory (and their tentative answers)”, J. Phys. Conf. Ser., 360 (2012), 012002, 10 pp., arXiv: 1112.3270 | DOI

[10] Ben Geloun J., “Two- and four-loop $\beta$-functions of rank-4 renormalizable tensor field theories”, Classical Quantum Gravity, 29 (2012), 235011, 40 pp., arXiv: 1205.5513 | DOI | MR | Zbl

[11] Ben Geloun J., “Renormalizable models in rank $d\geq 2$ tensorial group field theory”, Comm. Math. Phys., 332 (2014), 117–188, arXiv: 1306.1201 | DOI | MR | Zbl

[12] Ben Geloun J., A power counting theorem for a $p^{2a}\phi^4$ tensorial group field theory, arXiv: 1507.00590

[13] Ben Geloun J., Gurau R., Rivasseau V., “EPRL/FK group field theory”, Europhys. Lett., 92 (2010), 60008, 6 pp., arXiv: 1008.0354 | DOI

[14] Ben Geloun J., Krajewski T., Magnen J., Rivasseau V., “Linearized group field theory and power-counting theorems”, Classical Quantum Gravity, 27 (2010), 155012, 14 pp., arXiv: 1002.3592 | DOI | MR | Zbl

[15] Ben Geloun J., Livine E. R., “Some classes of renormalizable tensor models”, J. Math. Phys., 54 (2013), 082303, 25 pp., arXiv: 1207.0416 | DOI | MR | Zbl

[16] Ben Geloun J., Martini R., Oriti D., “Functional renormalization group analysis of a tensorial group field theory on $\mathbb{R}^3$”, Europhys. Lett., 112 (2015), 31001, 6 pp., arXiv: 1508.01855 | DOI

[17] Ben Geloun J., Martini R., Oriti D., “Functional renormalisation group analysis of tensorial group field theories on $\mathbb{R}^d$”, Phys. Rev. D, 94 (2016), 024017, 45 pp., arXiv: 1601.08211 | DOI

[18] Ben Geloun J., Rivasseau V., “A renormalizable 4-dimensional tensor field theory”, Comm. Math. Phys., 318 (2013), 69–109, arXiv: 1111.4997 | DOI | MR | Zbl

[19] Ben Geloun J., Rivasseau V., “Addendum to: A renormalizable 4-dimensional tensor field theory”, Comm. Math. Phys., 322 (2013), 957–965, arXiv: 1209.4606 | DOI | MR

[20] Ben Geloun J., Samary D. O., “3D tensor field theory: renormalization and one-loop $\beta$-functions”, Ann. Henri Poincaré, 14 (2013), 1599–1642, arXiv: 1201.0176 | DOI | MR | Zbl

[21] Ben Geloun J., Toriumi R., “Parametric representation of rank $d$ tensorial group field theory: Abelian models with kinetic term $\sum_s\vert p_s\vert +\mu$”, J. Math. Phys., 56 (2015), 093503, 53 pp., arXiv: 1409.0398 | DOI | MR | Zbl

[22] Benedetti D., Lahoche V., “Functional renormalization group approach for tensorial group field theory: a rank-6 model with closure constraint”, Classical Quantum Gravity, 33 (2016), 095003, 35 pp., arXiv: 1508.06384 | DOI | MR | Zbl

[23] Bonzom V., Delepouve T., Rivasseau V., “Enhancing non-melonic triangulations: a tensor model mixing melonic and planar maps”, Nuclear Phys. B, 895 (2015), 161–191, arXiv: 1502.01365 | DOI | MR | Zbl

[24] Bonzom V., Gurau R., Riello A., Rivasseau V., “Critical behavior of colored tensor models in the large $N$ limit”, Nuclear Phys. B, 853 (2011), 174–195, arXiv: 1105.3122 | DOI | MR | Zbl

[25] Bonzom V., Gurau R., Rivasseau V., “Random tensor models in the large $N$ limit: uncoloring the colored tensor models”, Phys. Rev. D, 85 (2012), 084037, 12 pp., arXiv: 1202.3637 | DOI | MR

[26] Bonzom V., Gurau R., Ryan J. P., Tanasa A., “The double scaling limit of random tensor models”, J. High Energy Phys., 2014:9 (2014), 051, 49 pp., arXiv: 1404.7517 | DOI | MR | Zbl

[27] Bonzom V., Smerlak M., “Bubble divergences from cellular cohomology”, Lett. Math. Phys., 93 (2010), 295–305, arXiv: 1004.5196 | DOI | MR | Zbl

[28] Bonzom V., Smerlak M., “Bubble divergences: sorting out topology from cell structure”, Ann. Henri Poincaré, 13 (2012), 185–208, arXiv: 1103.3961 | DOI | MR | Zbl

[29] Boulatov D. V., “A model of three-dimensional lattice gravity”, Modern Phys. Lett. A, 7 (1992), 1629–1646, arXiv: hep-th/9202074 | DOI | MR | Zbl

[30] Carrozza S., Tensorial methods and renormalization in group field theories, Springer Theses, Springer, Cham, 2014, arXiv: 1310.3736 | DOI | MR | Zbl

[31] Carrozza S., “Discrete renormalization group for ${\rm SU}(2)$ tensorial group field theory”, Ann. Inst. Henri Poincaré D, 2 (2015), 49–112, arXiv: 1407.4615 | DOI | MR | Zbl

[32] Carrozza S., “Group field theory in dimension $4-\varepsilon$”, Phys. Rev. D, 91 (2015), 065023, 10 pp., arXiv: 1411.5385 | DOI | MR

[33] Carrozza S., Oriti D., “Bounding bubbles: the vertex representation of $3d$ group field theory and the suppression of pseudomanifolds”, Phys. Rev. D, 85 (2012), 044004, 22 pp., arXiv: 1104.5158 | DOI | MR

[34] Carrozza S., Oriti D., “Bubbles and jackets: new scaling bounds in topological group field theories”, J. High Energy Phys., 2012:6 (2012), 092, 42 pp., arXiv: 1203.5082 | DOI | MR

[35] Carrozza S., Oriti D., Rivasseau V., “Renormalization of a ${\rm SU}(2)$ tensorial group field theory in three dimensions”, Comm. Math. Phys., 330 (2014), 581–637, arXiv: 1303.6772 | DOI | MR | Zbl

[36] Carrozza S., Oriti D., Rivasseau V., “Renormalization of tensorial group field theories: Abelian ${\rm U}(1)$ models in four dimensions”, Comm. Math. Phys., 327 (2014), 603–641, arXiv: 1207.6734 | DOI | MR | Zbl

[37] De Pietri R., Freidel L., Krasnov K., Rovelli C., “Barrett–Crane model from a Boulatov–Ooguri field theory over a homogeneous space”, Nuclear Phys. B, 574 (2000), 785–806, arXiv: hep-th/9907154 | DOI | MR | Zbl

[38] Dittrich B., The continuum limit of loop quantum gravity — a framework for solving the theory, arXiv: 1409.1450

[39] Dittrich B., Geiller M., “A new vacuum for loop quantum gravity”, Classical Quantum Gravity, 32 (2015), 112001, 13 pp., arXiv: 1401.6441 | DOI | MR | Zbl

[40] Dupuis M., Livine E. R., “Holomorphic simplicity constraints for 4D spinfoam models”, Classical Quantum Gravity, 28 (2011), 215022, 32 pp., arXiv: 1104.3683 | DOI | MR | Zbl

[41] Engle J., Livine E., Pereira R., Rovelli C., “LQG vertex with finite Immirzi parameter”, Nuclear Phys. B, 799 (2008), 136–149, arXiv: 0711.0146 | DOI | MR | Zbl

[42] Ferri M., Gagliardi C., Grasselli L., “A graph-theoretical representation of PL-manifolds — a survey on crystallizations”, Aequationes Math., 31 (1986), 121–141 | DOI | MR | Zbl

[43] Freidel L., “Group field theory: an overview”, Internat. J. Theoret. Phys., 44 (2005), 1769–1783, arXiv: hep-th/0505016 | DOI | MR | Zbl

[44] Freidel L., Gurau R., Oriti D., “Group field theory renormalization in the 3D case: power counting of divergences”, Phys. Rev. D, 80 (2009), 044007, 20 pp., arXiv: 0905.3772 | DOI | MR

[45] Freidel L., Krasnov K., “A new spin foam model for 4D gravity”, Classical Quantum Gravity, 25 (2008), 125018, 36 pp., arXiv: 0708.1595 | DOI | MR | Zbl

[46] Freidel L., Louapre D., “Ponzano–Regge model revisited. I. Gauge fixing, observables and interacting spinning particles”, Classical Quantum Gravity, 21 (2004), 5685–5726, arXiv: hep-th/0401076 | DOI | MR | Zbl

[47] Gielen S., Oriti D., Sindoni L., “Cosmology from group field theory formalism for quantum gravity”, Phys. Rev. Lett., 111 (2013), 031301, 4 pp., arXiv: 1303.3576 | DOI

[48] Gielen S., Sindoni L., Quantum cosmology from group field theory condensates: a review, arXiv: 1602.08104

[49] Gurau R., “Colored group field theory”, Comm. Math. Phys., 304 (2011), 69–93, arXiv: 0907.2582 | DOI | MR | Zbl

[50] Gurau R., “A generalization of the Virasoro algebra to arbitrary dimensions”, Nuclear Phys. B, 852 (2011), 592–614, arXiv: 1105.6072 | DOI | MR | Zbl

[51] Gurau R., “The $1/N$ expansion of colored tensor models”, Ann. Henri Poincaré, 12 (2011), 829–847, arXiv: 1011.2726 | DOI | MR | Zbl

[52] Gurau R., “The complete $1/N$ expansion of colored tensor models in arbitrary dimension”, Ann. Henri Poincaré, 13 (2012), 399–423, arXiv: 1102.5759 | DOI | MR | Zbl

[53] Gurau R., “Universality for random tensors”, Ann. Inst. Henri Poincaré Probab. Stat., 50 (2014), 1474–1525, arXiv: 1111.0519 | DOI | MR | Zbl

[54] Gurau R., Rivasseau V., “The $1/N$ expansion of colored tensor models in arbitrary dimension”, Europhys. Lett., 95 (2011), 50004, 5 pp., arXiv: 1101.4182 | DOI | MR

[55] Gurau R., Ryan J. P., “Colored tensor models — a review”, SIGMA, 8 (2012), 020, 78 pp., arXiv: 1109.4812 | DOI | MR | Zbl

[56] Gurau R., Ryan J. P., “Melons are branched polymers”, Ann. Henri Poincaré, 15 (2014), 2085–2131, arXiv: 1302.4386 | DOI | MR | Zbl

[57] Krajewski T., “Group field theories”, PoS Proc. Sci., 2011, PoS(QGQGS2011)005, 58 pp., arXiv: 1210.6257 | MR

[58] Krajewski T., Magnen J., Rivasseau V., Tanasa A., Vitale P., “Quantum corrections in the group field theory formulation of the Engle–Pereira–Rovelli–Livine and Freidel–Krasnov models”, Phys. Rev. D, 82 (2010), 124069, 20 pp., arXiv: 1007.3150 | DOI

[59] Krajewski T., Toriumi R., “Polchinski's equation for group field theory”, Fortschr. Phys., 62 (2014), 855–862 | DOI | MR

[60] Krajewski T., Toriumi R., Polchinski's exact renormalisation group for tensorial theories: Gaussian universality and power counting, arXiv: 1511.09084

[61] Krajewski T., Toriumi R., “Exact renormalisation group equations and loop equations for tensor models”, SIGMA, 12 (2016), 068, 36 pp., arXiv: 1603.00172 | DOI | MR | Zbl

[62] Lahoche V., Constructive tensorial group field theory I: the $U(1)-T^4_3$ model, arXiv: 1510.05050

[63] Lahoche V., Constructive tensorial group field theory II: the $U(1)-T^4_4$ model, arXiv: 1510.05051

[64] Lahoche V., Oriti D., Rivasseau V., “Renormalization of an Abelian tensor group field theory: solution at leading order”, J. High Energy Phys., 2015:4 (2015), 095, 41 pp., arXiv: 1501.02086 | DOI | MR

[65] Litim D. F., “Optimization of the exact renormalization group”, Phys. Lett. B, 486 (2000), 92–99, arXiv: hep-th/0005245 | DOI

[66] Magnen J., Noui K., Rivasseau V., Smerlak M., “Scaling behavior of three-dimensional group field theory”, Classical Quantum Gravity, 26 (2009), 185012, 25 pp., arXiv: 0906.5477 | DOI | MR | Zbl

[67] Morris T. R., “The exact renormalization group and approximate solutions”, Internat. J. Modern Phys. A, 9 (1994), 2411–2450, arXiv: hep-ph/9308265 | DOI | MR

[68] Ooguri H., “Topological lattice models in four dimensions”, Modern Phys. Lett. A, 7 (1992), 2799–2810, arXiv: hep-th/9205090 | DOI | MR | Zbl

[69] Oriti D., “Group field theory as the microscopic description of the quantum spacetime fluid: a new perspective on the continuum in quantum gravity”, PoS Proc. Sci., 2007, PoS(QG-Ph)030, 38 pp., arXiv: 0710.3276

[70] Oriti D., “The group field theory approach to quantum gravity”, Approaches to Quantum Gravity — toward a New Understanding of Space, Time, and Matter, Cambridge University Press, Cambridge, 2009, 310–331, arXiv: gr-qc/0607032 | DOI | MR

[71] Oriti D., “The microscopic dynamics of quantum space as a group field theory”, Foundations of Space and Time, Cambridge University Press, Cambridge, 2012, 257–320, arXiv: 1110.5606 | DOI | MR | Zbl

[72] Oriti D., Pranzetti D., Sindoni L., “Horizon entropy from quantum gravity condensates”, Phys. Rev. Lett., 116 (2016), 211301, 6 pp., arXiv: 1510.06991 | DOI

[73] Oriti D., Sindoni L., Wilson-Ewing E., Bouncing cosmologies from quantum gravity condensates, arXiv: 1602.08271

[74] Perez A., “The spin foam approach to quantum gravity”, Living Rev. Relativ., 16 (2013), 3, 128 pp., arXiv: 1205.2019 | DOI

[75] Reisenberger M. P., Rovelli C., “Spacetime as a Feynman diagram: the connection formulation”, Classical Quantum Gravity, 18 (2001), 121–140, arXiv: gr-qc/0002095 | DOI | MR | Zbl

[76] Riello A., “Self-energy of the Lorentzian Engle–Pereira–Rovelli–Livine and Freidel–Krasnov model of quantum gravity”, Phys. Rev. D, 88 (2013), 024011, 30 pp., arXiv: 1302.1781 | DOI

[77] Rivasseau V., From perturbative to constructive renormalization, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1991 | DOI | MR

[78] Rivasseau V., “Quantum gravity and renormalization: the tensor track”, AIP Conf. Proc., 1444 (2012), 18–29, arXiv: 1112.5104 | DOI

[79] Rivasseau V., Why are tensor field theories asymptotically free?, Europhys. Lett., 111 (2015), 60011, 6 pp., arXiv: 1507.04190 | DOI

[80] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[81] Samary D. O., “Beta functions of ${\rm U}(1)^d$ gauge invariant just renormalizable tensor models”, Phys. Rev. D, 88 (2013), 105003, 15 pp., arXiv: 1303.7256 | DOI

[82] Samary D. O., “Closed equations of the two-point functions for tensorial group field theory”, Classical Quantum Gravity, 31 (2014), 185005, 29 pp., arXiv: 1401.2096 | DOI | MR | Zbl

[83] Samary D. O., Pérez-Sánchez C. I., Vignes-Tourneret F., Wulkenhaar R., “Correlation functions of a just renormalizable tensorial group field theory: the melonic approximation”, Classical Quantum Gravity, 32 (2015), 175012, 18 pp., arXiv: 1411.7213 | DOI | MR | Zbl

[84] Samary D. O., Vignes-Tourneret F., “Just renormalizable TGFT's on ${\rm U}(1)^d$ with gauge invariance”, Comm. Math. Phys., 329 (2014), 545–578, arXiv: 1211.2618 | DOI | MR | Zbl

[85] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007, arXiv: gr-qc/0110034 | DOI | MR | Zbl

[86] Wetterich C., “Exact evolution equation for the effective potential”, Phys. Lett. B, 301 (1993), 90–94 | DOI

[87] Wilson K. G., Kogut J., “The renormalization group and the $\epsilon$ expansion”, Phys. Rep., 12 (1974), 75–199 | DOI