@article{SIGMA_2016_12_a68,
author = {Vincent Rivasseau},
title = {Random {Tensors} and {Quantum} {Gravity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a68/}
}
Vincent Rivasseau. Random Tensors and Quantum Gravity. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a68/
[1] Ambjørn J., “Simplicial Euclidean and Lorentzian quantum gravity”, General Relativity Gravitation (Durban, 2001), World Sci. Publ., River Edge, NJ, 2002, 3–27, arXiv: gr-qc/0201028 | MR | Zbl
[2] Ambjørn J., Durhuus B., Jonsson T., Quantum geometry. A statistical field theory approach, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1997 | DOI | MR | Zbl
[3] Ambjørn J., Görlich A., Jurkiewicz J., Loll R., “Causal dynamical triangulations and the search for a theory of quantum gravity”, Internat. J. Modern Phys. D, 22 (2013), 1330019, 18 pp. | DOI | MR
[4] Ambjørn J., Jurkiewicz J., Loll R., “The universe from scratch”, Contemp. Phys., 47 (2006), 103–117, arXiv: hep-th/0509010 | DOI
[5] Avohou R. C., Rivasseau V., Tanasa A., “Renormalization and Hopf algebraic structure of the five-dimensional quartic tensor field theory”, J. Phys. A: Math. Theor., 48 (2015), 485204, 20 pp., arXiv: 1507.0354 | DOI | MR | Zbl
[6] Bandieri P., Casali M. R., Cristofori P., Grasselli L., Mulazzani M., “Computational aspects of crystallization theory: complexity, catalogues and classification of 3-manifolds”, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 58 (2011), 11–45 | MR | Zbl
[7] Baratin A., Oriti D., “Group field theory and simplicial gravity path integrals: a model for Holst–Plebanski gravity”, Phys. Rev. D, 85 (2012), 044003, 15 pp., arXiv: 1111.5842 | DOI
[8] Ben Geloun J., “Ward–Takahashi identities for the colored Boulatov model”, J. Phys. A: Math. Theor., 44 (2011), 415402, 30 pp., arXiv: 1106.1847 | DOI | MR | Zbl
[9] Ben Geloun J., “Two- and four-loop $\beta$-functions of rank-4 renormalizable tensor field theories”, Classical Quantum Gravity, 29 (2012), 235011, 40 pp., arXiv: 1205.5513 | DOI | MR | Zbl
[10] Ben Geloun J., “Asymptotic freedom of rank 4 tensor group field theory”, Symmetries and Groups in Contemporary Physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., 11, World Sci. Publ., Hackensack, NJ, 2013, 367–372, arXiv: 1210.5490 | DOI | MR | Zbl
[11] Ben Geloun J., “On the finite amplitudes for open graphs in Abelian dynamical colored Boulatov–Ooguri models”, J. Phys. A: Math. Theor., 46 (2013), 402002, 12 pp., arXiv: 1307.8299 | DOI | MR | Zbl
[12] Ben Geloun J., “Renormalizable models in rank $d\geq 2$ tensorial group field theory”, Comm. Math. Phys., 332 (2014), 117–188, arXiv: 1306.1201 | DOI | MR | Zbl
[13] Ben Geloun J., Bonzom V., “Radiative corrections in the Boulatov–Ooguri tensor model: the 2-point function”, Internat. J. Theoret. Phys., 50 (2011), 2819–2841, arXiv: 1101.4294 | DOI | Zbl
[14] Ben Geloun J., Krajewski T., Magnen J., Rivasseau V., “Linearized group field theory and power-counting theorems”, Classical Quantum Gravity, 27 (2010), 155012, 14 pp., arXiv: 1002.3592 | DOI | MR | Zbl
[15] Ben Geloun J., Livine E. R., “Some classes of renormalizable tensor models”, J. Math. Phys., 54 (2013), 082303, 25 pp., arXiv: 1207.0416 | DOI | MR | Zbl
[16] Ben Geloun J., Magnen J., Rivasseau V., “Bosonic colored group field theory”, Eur. Phys. J. C Part. Fields, 70 (2010), 1119–1130, arXiv: 0911.1719 | DOI
[17] Ben Geloun J., Martini R., Oriti D., “Functional renormalization group analysis of a tensorial group field theory on $\mathbb{R}^3$”, Europhys. Lett., 112 (2015), 31001, 6 pp., arXiv: 1508.01855 | DOI
[18] Ben Geloun J., Ramgoolam S., “Counting tensor model observables and branched covers of the 2-sphere”, Ann. Inst. Henri Poincaré D, 1 (2014), 77–138, arXiv: 1307.6490 | DOI | MR | Zbl
[19] Ben Geloun J., Rivasseau V., “A renormalizable 4-dimensional tensor field theory”, Comm. Math. Phys., 318 (2013), 69–109, arXiv: 1111.4997 | DOI | MR | Zbl
[20] Ben Geloun J., Rivasseau V., “Addendum to: A renormalizable 4-dimensional tensor field theory”, Comm. Math. Phys., 322 (2013), 957–965, arXiv: 1209.4606 | DOI | MR
[21] Ben Geloun J., Samary D. O., “3D tensor field theory: renormalization and one-loop $\beta$-functions”, Ann. Henri Poincaré, 14 (2013), 1599–1642, arXiv: 1201.0176 | DOI | MR | Zbl
[22] Benedetti D., Ben Geloun J., Oriti D., “Functional renormalisation group approach for tensorial group field theory: a rank-3 model”, J. High Energy Phys., 2015:3 (2015), 084, 40 pp., arXiv: 1411.3180 | DOI | MR
[23] Benedetti D., Lahoche V., “Functional renormalization group approach for tensorial group field theory: a rank-6 model with closure constraint”, Classical Quantum Gravity, 33 (2016), 095003, 35 pp., arXiv: 1508.06384 | DOI | MR | Zbl
[24] Bonzom V., “New $1/N$ expansions in random tensor models”, J. High Energy Phys., 2013:6 (2013), 062, 25 pp., arXiv: 1211.1657 | DOI | MR | Zbl
[25] Bonzom V., Delepouve T., Rivasseau V., “Enhancing non-melonic triangulations: a tensor model mixing melonic and planar maps”, Nuclear Phys. B, 895 (2015), 161–191, arXiv: 1502.0136 | DOI | MR | Zbl
[26] Bonzom V., Gurau R., Riello A., Rivasseau V., “Critical behavior of colored tensor models in the large $N$ limit”, Nuclear Phys. B, 853 (2011), 174–195, arXiv: 1105.3122 | DOI | MR | Zbl
[27] Bonzom V., Gurau R., Rivasseau V., “Random tensor models in the large $N$ limit: uncoloring the colored tensor models”, Phys. Rev. D, 85 (2012), 084037, 12 pp., arXiv: 1202.3637 | DOI | MR
[28] Bonzom V., Lionni L., Rivasseau V., Colored triangulations of arbitrary dimensions are stuffed Walsh maps, arXiv: 1508.03805
[29] Boulatov D. V., “A model of three-dimensional lattice gravity”, Modern Phys. Lett. A, 7 (1992), 1629–1646, arXiv: hep-th/9202074 | DOI | MR | Zbl
[30] Carrozza S., Springer Theses, Springer, Cham, 2014, arXiv: 1310.3736 | DOI | MR | Zbl
[31] Carrozza S., “Discrete renormalization group for ${\rm SU}(2)$ tensorial group field theory”, Ann. Inst. Henri Poincaré D, 2 (2015), 49–112, arXiv: 1407.4615 | DOI | MR | Zbl
[32] Carrozza S., Oriti D., Rivasseau V., “Renormalization of a ${\rm SU}(2)$ tensorial group field theory in three dimensions”, Comm. Math. Phys., 330 (2014), 581–637, arXiv: 1303.6772 | DOI | MR | Zbl
[33] Carrozza S., Oriti D., Rivasseau V., “Renormalization of tensorial group field theories: Abelian ${\rm U}(1)$ models in four dimensions”, Comm. Math. Phys., 327 (2014), 603–641, arXiv: 1207.6734 | DOI | MR | Zbl
[34] Casali M. R., Cristofori P., “Coloured graphs representing PL 4-manifolds”, Electron. Notes Discrete Math., 40 (2013), 83–87 | DOI | MR
[35] Casali M. R., Cristofori P., “Cataloguing PL 4-manifolds by gem-complexity”, Electron. J. Combin., 22 (2015), 4.25, 25 pp., arXiv: 1408.0378 | MR | Zbl
[36] Casali M. R., Cristofori P., Gagliardi C., “Classifying PL 4-manifolds via crystallizations, results and open problems”, A Mathematical Tribute to Professor José María Montesinos Amilibia, eds. M. Castrillń, E. Martín-Peinador, J. M. Rodríguez-Sanjurjo, J. M. Ruiz, Ciudad Universitaria, Madrid, 2016, 199–226 http://www.mat.ucm.es/ ̃ jesusr/HmjMonAmi/PORTADA/FINAL/MonAmiJM.pdf
[37] Dartois S., Gurau R., Rivasseau V., “Double scaling in tensor models with a quartic interaction”, J. High Energy Phys., 2013:9 (2013), 088, 33 pp., arXiv: 1307.5281 | DOI | MR | Zbl
[38] Delepouve T., Gurau R., Rivasseau V., “Universality and Borel summability of arbitrary quartic tensor models”, Ann. Inst. Henri Poincaré Probab. Stat., 52 (2016), 821–848, arXiv: 1403.0170 | DOI | MR | Zbl
[39] Delepouve T., Rivasseau V., “Constructive tensor field theory: the $T^4_3$ model”, Comm. Math. Phys., 345 (2016), 477–506, arXiv: 1412.5091 | DOI | MR | Zbl
[40] Di Francesco P., Ginsparg P., Zinn-Justin J., “$2$D gravity and random matrices”, Phys. Rep., 254 (1995), 1–133, arXiv: hep-th/9306153 | DOI | MR
[41] Disertori M., Gurau R., Magnen J., Rivasseau V., “Vanishing of beta function of non-commutative $\Phi_4^4$ theory to all orders”, Phys. Lett. B, 649 (2007), 95–102, arXiv: hep-th/0612251 | DOI | MR | Zbl
[42] Disertori M., Rivasseau V., “Two and three loops beta function of non commutative $\Phi_4^4$ theory”, Eur. Phys. J. C Part. Fields, 50 (2007), 661–671, arXiv: hep-th/0610224 | DOI | Zbl
[43] Donaldson S. K., “An application of gauge theory to four-dimensional topology”, J. Differential Geom., 18 (1983), 279–315 | MR | Zbl
[44] Doplicher S., Fredenhagen K., Roberts J. E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 | DOI | MR
[45] Dyson F. J., Disturbing the universe, Basic Books, 1979
[46] Eichhorn A., Koslowski T., “Continuum limit in matrix models for quantum gravity from the functional renormalization group”, Phys. Rev. D, 88 (2013), 084016, 15 pp., arXiv: 1309.1690 | DOI
[47] Ferri M., Gagliardi C., Grasselli L., “A graph-theoretical representation of PL-manifolds — a survey on crystallizations”, Aequationes Math., 31 (1986), 121–141 | DOI | MR | Zbl
[48] Freidel L., “Group field theory: an overview”, Internat. J. Theoret. Phys., 44 (2005), 1769–1783, arXiv: hep-th/0505016 | DOI | MR | Zbl
[49] Freidel L., Gurau R., Oriti D., “Group field theory renormalization in the 3D case: power counting of divergences”, Phys. Rev. D, 80 (2009), 044007, 20 pp., arXiv: 0905.3772 | DOI | MR
[50] Grosse H., Wulkenhaar R., “The $\beta$-function in duality-covariant non-commutative $\phi^4$-theory”, Eur. Phys. J. C Part. Fields, 35 (2004), 277–282, arXiv: hep-th/0402093 | DOI | MR | Zbl
[51] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$-theory on noncommutative ${\mathbb R}^4$ in the matrix base”, Comm. Math. Phys., 256 (2005), 305–374, arXiv: hep-th/0401128 | DOI | MR | Zbl
[52] Grosse H., Wulkenhaar R., Progress in solving a noncommutative quantum field theory in four dimensions, arXiv: 0909.1389 | MR
[53] Grosse H., Wulkenhaar R., “Self-dual noncommutative $\phi^4$-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory”, Comm. Math. Phys., 329 (2014), 1069–1130, arXiv: 1205.0465 | DOI | MR | Zbl
[54] Grosse H., Wulkenhaar R., Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity, arXiv: 1406.7755
[55] Grosse H., Wulkenhaar R., “On the fixed point equation of a solvable 4D QFT model”, Vietnam J. Math., 44 (2016), 153–180, arXiv: 1505.0516 | DOI | MR | Zbl
[56] Gurau R., “Colored group field theory”, Comm. Math. Phys., 304 (2011), 69–93, arXiv: 0907.2582 | DOI | MR | Zbl
[57] Gurau R., “The $1/N$ expansion of colored tensor models”, Ann. Henri Poincaré, 12 (2011), 829–847, arXiv: 1011.2726 | DOI | MR | Zbl
[58] Gurau R., “The complete $1/N$ expansion of colored tensor models in arbitrary dimension”, Ann. Henri Poincaré, 13 (2012), 399–423, arXiv: 1102.5759 | DOI | MR | Zbl
[59] Gurau R., “The $1/N$ expansion of tensor models beyond perturbation theory”, Comm. Math. Phys., 330 (2014), 973–1019, arXiv: 1304.2666 | DOI | MR | Zbl
[60] Gurau R., “Universality for random tensors”, Ann. Inst. Henri Poincaré Probab. Stat., 50 (2014), 1474–1525, arXiv: 1111.0519 | DOI | MR | Zbl
[61] Gurau R., Rivasseau V., “The $1/N$ expansion of colored tensor models in arbitrary dimension”, Europhys. Lett., 95 (2011), 50004, 5 pp., arXiv: 1101.4182 | DOI | MR
[62] Gurau R., Rivasseau V., “The multiscale loop vertex expansion”, Ann. Henri Poincaré, 16 (2015), 1869–1897, arXiv: 1312.7226 | DOI | MR | Zbl
[63] Gurau R., Ryan J. P., “Colored tensor models — a review”, SIGMA, 8 (2012), 020, 78 pp., arXiv: 1109.4812 | DOI | MR | Zbl
[64] Gurau R., Ryan J. P., “Melons are branched polymers”, Ann. Henri Poincaré, 15 (2014), 2085–2131, arXiv: 1302.4386 | DOI | MR | Zbl
[65] Gurau R., Schaeffer G., Regular colored graphs of positive degree, arXiv: 1307.5279
[66] Gurau R., Tanasa A., Youmans D. R., “The double scaling limit of the multi-orientable tensor model”, Europhys. Lett., 111 (2015), 21002, 6 pp., arXiv: 1505.00586 | DOI
[67] Haag R., Local quantum physics. Fields, particles, algebras, Texts and Monographs in Physics, 2nd ed., Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl
[68] Krajewski T., “Group field theories”, PoS Proc. Sci., 2011, PoS(QGQGS2011)005, 58 pp., arXiv: 1210.6257 | MR
[69] Krajewski T., Rivasseau V., Tanasa A., “Combinatorial Hopf algebraic description of the multi-scale renormalization in quantum field theory”, Sém. Lothar. Combin., 70 (2013), B70c, 23 pp., arXiv: 1211.4429 | MR
[70] Krajewski T., Toriumi R., Polchinski's exact renormalisation group for tensorial theories: Gaussian universality and power counting, arXiv: 1511.09084
[71] Lahoche V., Constructive tensorial group field theory I: the $U(1)-T^4_3$ model, arXiv: 1510.05050
[72] Lahoche V., Constructive tensorial group field theory II: the $U(1)-T^4_4$ model, arXiv: 1510.05051
[73] Lahoche V., Oriti D., Renormalization of a tensorial field theory on the homogeneous space ${\rm SU}(2)/{\rm U}(1)$, arXiv: 1310.3736
[74] Oriti D., “Group field theory as the microscopic description of the quantum spacetime fluid: a new perspective on the continuum in quantum gravity”, PoS Proc. Sci., 2007, PoS(QG-Ph)030, 38 pp., arXiv: 0710.3276
[75] Oriti D., “A quantum field theory of simplicial geometry and the emergence of space-time”, J. Phys. Conf. Ser., 67 (2007), 012052, 10 pp., arXiv: hep-th/0612301 | DOI | MR
[76] Oriti D., Tlas T., “A new class of group field theories for first order discrete quantum gravity”, Classical Quantum Gravity, 25 (2008), 085011, 44 pp., arXiv: 0710.2679 | DOI | MR | Zbl
[77] Raasakka M., Tanasa A., “Combinatorial Hopf algebra for the Ben Geloun–Rivasseau tensor field theory”, Sém. Lothar. Combin., 70 (2013), B70d, 29 pp., arXiv: 1306.1022 | MR
[78] Rivasseau V., “Towards renormalizing group field theory”, PoS Proc. Sci., 2010, PoS(CNCFG2010)004, 21 pp., arXiv: 1103.1900
[79] Rivasseau V., “Quantum gravity and renormalization: the tensor track”, AIP Conf. Proc., 1444 (2012), 18–29, arXiv: 1112.5104 | DOI
[80] Rivasseau V., “The tensor track: an update”, Symmetries and Groups in Contemporary Physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., 11, World Sci. Publ., Hackensack, NJ, 2013, 63–74, arXiv: 1209.5284 | DOI | MR | Zbl
[81] Rivasseau V., “The tensor theory space”, Fortschr. Phys., 62 (2014), 835–840, arXiv: 1407.0284 | DOI | MR
[82] Rivasseau V., “The tensor track, III”, Fortschr. Phys., 62 (2014), 81–107, arXiv: 1311.1461 | DOI | MR | Zbl
[83] Rivasseau V., Why are tensor field theories asymptotically free?, Europhys. Lett., 111 (2015), 60011, 6 pp., arXiv: 1507.04190 | DOI
[84] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[85] Samary D. O., “Beta functions of ${\rm U}(1)^d$ gauge invariant just renormalizable tensor models”, Phys. Rev. D, 88 (2013), 105003, 15 pp., arXiv: 1303.7256 | DOI
[86] Samary D. O., Pérez-Sánchez C. I., Vignes-Tourneret F., Wulkenhaar R., “Correlation functions of a just renormalizable tensorial group field theory: the melonic approximation”, Classical Quantum Gravity, 32 (2015), 175012, 18 pp., arXiv: 1411.7213 | DOI | MR | Zbl
[87] Samary D. O., Vignes-Tourneret F., “Just renormalizable TGFT's on ${\rm U}(1)^d$ with gauge invariance”, Comm. Math. Phys., 329 (2014), 545–578, arXiv: 1211.2618 | DOI | MR | Zbl
[88] Scorpan A., The wild world of 4-manifolds, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[89] Seiberg N., Emergent spacetime, arXiv: hep-th/0601234
[90] Sindoni L., “Emergent models for gravity: an overview of microscopic models”, SIGMA, 8 (2012), 027, 45 pp., arXiv: 1110.0686 | DOI | MR | Zbl
[91] Streater R. F., Wightman A. S., PCT, spin and statistics, and all that, Princeton Landmarks in Physics, Princeton University Press, Princeton, NJ, 2000 | MR | Zbl
[92] Wishart J., “Generalized product moment distribution in samples”, Biometrika, 20A (1928), 32–52 | DOI | Zbl