Exact Renormalisation Group Equations and Loop Equations for Tensor Models
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we review some general formulations of exact renormalisation group equations and loop equations for tensor models and tensorial group field theories. We illustrate the use of these equations in the derivation of the leading order expectation values of observables in tensor models. Furthermore, we use the exact renormalisation group equations to establish a suitable scaling dimension for interactions in Abelian tensorial group field theories with a closure constraint. We also present analogues of the loop equations for tensor models.
Keywords: tensor models; group field theory; large $N$ limit; exact renormalisation equation.
@article{SIGMA_2016_12_a67,
     author = {Thomas Krajewski and Reiko Toriumi},
     title = {Exact {Renormalisation} {Group} {Equations} and {Loop} {Equations} {for~Tensor} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a67/}
}
TY  - JOUR
AU  - Thomas Krajewski
AU  - Reiko Toriumi
TI  - Exact Renormalisation Group Equations and Loop Equations for Tensor Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a67/
LA  - en
ID  - SIGMA_2016_12_a67
ER  - 
%0 Journal Article
%A Thomas Krajewski
%A Reiko Toriumi
%T Exact Renormalisation Group Equations and Loop Equations for Tensor Models
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a67/
%G en
%F SIGMA_2016_12_a67
Thomas Krajewski; Reiko Toriumi. Exact Renormalisation Group Equations and Loop Equations for Tensor Models. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a67/

[1] Ambjørn J., Durhuus B., Jónsson T., “Three-dimensional simplicial quantum gravity and generalized matrix models”, Modern Phys. Lett. A, 6 (1991), 1133–1146 | DOI | MR | Zbl

[2] Ambjørn J., Jurkiewicz J., Makeenko Y. M., “Multiloop correlators for two-dimensional quantum gravity”, Phys. Lett. B, 251 (1990), 517–524 | DOI | MR

[3] Bagnuls C., Bervillier C., “Exact renormalization group equations: an introductory review”, Phys. Rep., 348 (2001), 91–157, arXiv: hep-th/0002034 | DOI | MR | Zbl

[4] Ben Geloun J., Martini R., Oriti D., Functional renormalisation group analysis of tensorial group field theories on $\mathbb{R}^d$, arXiv: 1601.08211

[5] Ben Geloun J., Rivasseau V., “A renormalizable 4-dimensional tensor field theory”, Comm. Math. Phys., 318 (2013), 69–109, arXiv: 1111.4997 | DOI | MR | Zbl

[6] Benedetti D., Ben Geloun J., Oriti D., “Functional renormalisation group approach for tensorial group field theory: a rank-3 model”, J. High Energy Phys., 2015:3 (2015), 084, 40 pp., arXiv: 1411.3180 | DOI | MR

[7] Benedetti D., Lahoche V., “Functional renormalization group approach for tensorial group field theory: a rank-6 model with closure constraint”, Classical Quantum Gravity, 33 (2016), 095003, 35 pp., arXiv: 1508.06384 | DOI | MR | Zbl

[8] Bonzom V., “Revisiting random tensor models at large $N$ via the Schwinger–Dyson equations”, J. High Energy Phys., 2013:3 (2013), 160, 25 pp., arXiv: 1208.6216 | DOI | MR | Zbl

[9] Bonzom V., Delepouve T., Rivasseau V., “Enhancing non-melonic triangulations: a tensor model mixing melonic and planar maps”, Nuclear Phys. B, 895 (2015), 161–191, arXiv: 1502.01365 | DOI | MR | Zbl

[10] Bonzom V., Gurau R., Ryan J. P., Tanasa A., “The double scaling limit of random tensor models”, J. High Energy Phys., 2014:9 (2014), 051, 49 pp., arXiv: 1404.7517 | DOI | MR | Zbl

[11] Braun J., Gies H., Scherer D. D., “Asymptotic safety: a simple example”, Phys. Rev. D, 83 (2011), 085012, 15 pp., arXiv: 1011.1456 | DOI

[12] Carrozza S., Tensorial methods and renormalization in group field theories, Springer Theses, Springer, Cham, 2014, arXiv: 1310.3736 | DOI | MR | Zbl

[13] Carrozza S., “Discrete renormalization group for ${\rm SU}(2)$ tensorial group field theory”, Ann. Inst. Henri Poincaré D, 2 (2015), 49–112, arXiv: 1407.4615 | DOI | MR | Zbl

[14] Carrozza S., “Group field theory in dimension $4-\varepsilon$”, Phys. Rev. D, 91 (2015), 065023, 10 pp., arXiv: 1411.5385 | DOI | MR

[15] Carrozza S., Flowing in group field theory space: a review, arXiv: 1603.01902 | MR

[16] Carrozza S., Oriti D., Rivasseau V., “Renormalization of a ${\rm SU}(2)$ tensorial group field theory in three dimensions”, Comm. Math. Phys., 330 (2014), 581–637, arXiv: 1303.6772 | DOI | MR | Zbl

[17] Carrozza S., Oriti D., Rivasseau V., “Renormalization of tensorial group field theories: Abelian ${\rm U}(1)$ models in four dimensions”, Comm. Math. Phys., 327 (2014), 603–641, arXiv: 1207.6734 | DOI | MR | Zbl

[18] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann–Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem”, Comm. Math. Phys., 210 (2000), 249–273, arXiv: hep-th/9912092 | DOI | MR | Zbl

[19] Dartois S., Gurau R., Rivasseau V., “Double scaling in tensor models with a quartic interaction”, J. High Energy Phys., 2013:9 (2013), 088, 33 pp., arXiv: 1307.5281 | DOI | MR | Zbl

[20] Eichhorn A., Koslowski T., “Continuum limit in matrix models for quantum gravity from the functional renormalization group”, Phys. Rev. D, 88 (2013), 084016, 15 pp., arXiv: 1309.1690 | DOI

[21] Eichhorn A., Koslowski T., “Towards phase transitions between discrete and continuum quantum spacetime from the renormalization group”, Phys. Rev. D, 90 (2014), 104039, 14 pp., arXiv: 1408.4127 | DOI

[22] Gurau R., “A diagrammatic equation for oriented planar graphs”, Nuclear Phys. B, 839 (2010), 580–603, arXiv: 1003.2187 | DOI | MR | Zbl

[23] Gurau R., “Colored group field theory”, Comm. Math. Phys., 304 (2011), 69–93, arXiv: 0907.2582 | DOI | MR | Zbl

[24] Gurau R., “A generalization of the Virasoro algebra to arbitrary dimensions”, Nuclear Phys. B, 852 (2011), 592–614, arXiv: 1105.6072 | DOI | MR | Zbl

[25] Gurau R., “The complete $1/N$ expansion of colored tensor models in arbitrary dimension”, Ann. Henri Poincaré, 13 (2012), 399–423, arXiv: 1102.5759 | DOI | MR | Zbl

[26] Gurau R., “The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders”, Nuclear Phys. B, 865 (2012), 133–147, arXiv: 1203.4965 | DOI | MR | Zbl

[27] Gurau R., “The $1/N$ expansion of tensor models beyond perturbation theory”, Comm. Math. Phys., 330 (2014), 973–1019, arXiv: 1304.2666 | DOI | MR | Zbl

[28] Gurau R., “Universality for random tensors”, Ann. Inst. Henri Poincaré Probab. Stat., 50 (2014), 1474–1525, arXiv: 1111.0519 | DOI | MR | Zbl

[29] Gurau R., Rivasseau V., Sfondrini A., Renormalization: an advanced overview, arXiv: 1401.5003

[30] Krajewski T., “Schwinger–Dyson equations in group field theories of quantum gravity”, Symmetries and Groups in Contemporary Physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., 11, World Sci. Publ., Hackensack, NJ, 2013, 373–378, arXiv: 1211.1244 | DOI | MR | Zbl

[31] Krajewski T., Toriumi R., “Polchinski's equation for group field theory”, Fortschr. Phys., 62 (2014), 855–862 | DOI | MR

[32] Krajewski T., Toriumi R., Polchinski's exact renormalisation group for tensorial theories: Gaussian universality and power counting, arXiv: 1511.09084

[33] Lahoche V., Oriti D., Rivasseau V., “Renormalization of an Abelian tensor group field theory: solution at leading order”, J. High Energy Phys., 2015:4 (2015), 095, 41 pp., arXiv: 1501.02086 | DOI | MR

[34] Oriti D., Group field theory and loop quantum gravity, arXiv: 1408.7112

[35] Polchinski J., “Renormalization and effective Lagrangians”, Nuclear Phys. B, 231 (1984), 269–295 | DOI

[36] Polonyi J., “Lectures on the functional renormalization group method”, Cent. Eur. J. Phys., 1 (2003), 1–71, arXiv: hep-th/0110026 | DOI

[37] Rivasseau V., From perturbative to constructive renormalization, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1991 | DOI | MR

[38] Rivasseau V., “The tensor track, III”, Fortschr. Phys., 62 (2014), 81–107, arXiv: 1311.1461 | DOI | MR | Zbl

[39] Rosten O. J., “Fundamentals of the exact renormalization group”, Phys. Rep., 511 (2012), 177–272, arXiv: 1003.1366 | DOI | MR

[40] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[41] Samary D. O., Vignes-Tourneret F., “Just renormalizable TGFT's on ${\rm U}(1)^d$ with gauge invariance”, Comm. Math. Phys., 329 (2014), 545–578, arXiv: 1211.2618 | DOI | MR | Zbl

[42] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl

[43] Zinn-Justin J., Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys., 113, Oxford University Press, 2002 | DOI | MR