@article{SIGMA_2016_12_a64,
author = {Arno B. J. Kuijlaars},
title = {A {Vector} {Equilibrium} {Problem} for {Muttalib{\textendash}Borodin} {Biorthogonal} {Ensembles}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a64/}
}
Arno B. J. Kuijlaars. A Vector Equilibrium Problem for Muttalib–Borodin Biorthogonal Ensembles. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a64/
[1] Aptekarev A. I., Kuijlaars A. B. J., “Hermite–Padé approximations and ensembles of multiple orthogonal polynomials”, Russ. Math. Surv., 66 (2011), 1133–1199 | DOI | MR | Zbl
[2] Beckermann B., Kalyagin V., Matos A. C., Wielonsky F., “Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses”, Constr. Approx., 37 (2013), 101–134, arXiv: 1105.3088 | DOI | MR | Zbl
[3] Bloom T., Levenberg N., Totik V., Wielonsky F., “Modified logarithmic potential theory and applications”, Int. Math. Res. Not. (to appear) , arXiv: 1502.06925 | DOI
[4] Borodin A., “Biorthogonal ensembles”, Nuclear Phys. B, 536 (1999), 704–732, arXiv: math.CA/9804027 | DOI | MR | Zbl
[5] Butez R., “Large deviations principle for biorthogonal ensembles and variational formulation for the Dykema–Haagerup distribution”, arXiv: 1602.07201
[6] Cheliotis D., Triangular random matrices and biorthogonal ensembles, arXiv: 1404.4730
[7] Claeys T., Romano S., “Biorthogonal ensembles with two-particle interactions”, Nonlinearity, 27 (2014), 2419–2444, arXiv: 1312.2892 | DOI | MR
[8] Deift P., Kriecherbauer T., McLaughlin K. T.-R., “New results on the equilibrium measure for logarithmic potentials in the presence of an external field”, J. Approx. Theory, 95 (1998), 388–475 | DOI | MR | Zbl
[9] Duits M., Kuijlaars A. B. J., “An equilibrium problem for the limiting eigenvalue distribution of banded Toeplitz matrices”, SIAM J. Matrix Anal. Appl., 30 (2008), 173–196, arXiv: 0704.0378 | DOI | MR | Zbl
[10] Eichelsbacher P., Sommerauer J., Stolz M., “Large deviations for disordered bosons and multiple orthogonal polynomial ensembles”, J. Math. Phys., 52 (2011), 073510, 16 pp., arXiv: 1102.0792 | DOI | MR | Zbl
[11] Forrester P. J., Liu D.-Z., “Raney distributions and random matrix theory”, J. Stat. Phys., 158 (2015), 1051–1082, arXiv: 1404.5759 | DOI | MR | Zbl
[12] Forrester P. J., Liu D.-Z., Zinn-Justin P., “Equilibrium problems for Raney densities”, Nonlinearity, 28 (2015), 2265–2277, arXiv: 1411.4091 | DOI | MR | Zbl
[13] Forrester P. J., Wang D., Muttalib–Borodin ensembles in random matrix theory — realisations and correlation functions, arXiv: 1502.07147
[14] Hardy A., Kuijlaars A. B. J., “Weakly admissible vector equilibrium problems”, J. Approx. Theory, 164 (2012), 854–868, arXiv: 1110.6800 | DOI | MR | Zbl
[15] Kuijlaars A. B. J., “Multiple orthogonal polynomial ensembles”, Recent Trends in Orthogonal Polynomials and Approximation Theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 155–176, arXiv: 0902.1058 | DOI | MR | Zbl
[16] Kuijlaars A. B. J., Stivigny D., “Singular values of products of random matrices and polynomial ensembles”, Random Matrices Theory Appl., 3 (2014), 1450011, 22 pp., arXiv: 1404.5802 | DOI | MR | Zbl
[17] Muttalib K. A., “Random matrix models with additional interactions”, J. Phys. A: Math. Gen., 28 (1995), L159–L164, arXiv: cond-mat/9405084 | DOI | MR
[18] Neuschel T., Van Assche W., “Asymptotic zero distribution of Jacobi–Piñeiro and multiple Laguerre polynomials”, J. Approx. Theory, 205 (2016), 114–132, arXiv: 1509.04542 | DOI | MR | Zbl
[19] Nikishin E. M., Sorokin V. N., Rational approximations and orthogonality, Translations of Mathematical Monographs, 92, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl
[20] Saff E.B., Totik V., Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, 316, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl