Skew-Zigzag Algebras
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the skew-zigzag algebras introduced by Huerfano and Khovanov. In particular, we relate moduli spaces of such algebras with the cohomology of the corresponding graph.
Keywords: zigzag algebra; path algebra; Dynkin diagram; moduli space; graph cohomology.
@article{SIGMA_2016_12_a61,
     author = {Chad Couture},
     title = {Skew-Zigzag {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a61/}
}
TY  - JOUR
AU  - Chad Couture
TI  - Skew-Zigzag Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a61/
LA  - en
ID  - SIGMA_2016_12_a61
ER  - 
%0 Journal Article
%A Chad Couture
%T Skew-Zigzag Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a61/
%G en
%F SIGMA_2016_12_a61
Chad Couture. Skew-Zigzag Algebras. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a61/

[1] Assem I., Simson D., Skowroński A., Elements of the representation theory of associative algebras, v. 1, London Mathematical Society Student Texts, 65, Techniques of representation theory, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl

[2] Cautis S., Licata A., “Heisenberg categorification and Hilbert schemes”, Duke Math. J., 161 (2012), 2469–2547, arXiv: 1009.5147 | DOI | MR | Zbl

[3] Cautis S., Licata A., Sussan J., “Braid group actions via categorified Heisenberg complexes”, Compos. Math., 150 (2014), 105–142, arXiv: 1207.5245 | DOI | MR | Zbl

[4] Diestel R., Graph theory, Graduate Texts in Mathematics, 173, 4th ed., Springer, Heidelberg, 2010 http://diestel-graph-theory.com/ | DOI | MR | Zbl

[5] Huerfano R. S., Khovanov M., “A category for the adjoint representation”, J. Algebra, 246 (2001), 514–542, arXiv: math.QA/0002060 | DOI | MR | Zbl

[6] Kock J., Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, 59, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[7] Rosso D., Savage A., A general approach to Heisenberg categorification via wreath product algebras, arXiv: 1507.06298

[8] Sunada T., Topological crystallography. With a view towards discrete geometric analysis, Surveys and Tutorials in the Applied Mathematical Sciences, 6, Springer, Tokyo, 2013 | DOI | MR | Zbl

[9] Zimmermann A., Representation theory. A homological algebra point of view, Algebra and Applications, 19, Springer, Cham, 2014 | DOI | MR | Zbl