@article{SIGMA_2016_12_a61,
author = {Chad Couture},
title = {Skew-Zigzag {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a61/}
}
Chad Couture. Skew-Zigzag Algebras. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a61/
[1] Assem I., Simson D., Skowroński A., Elements of the representation theory of associative algebras, v. 1, London Mathematical Society Student Texts, 65, Techniques of representation theory, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl
[2] Cautis S., Licata A., “Heisenberg categorification and Hilbert schemes”, Duke Math. J., 161 (2012), 2469–2547, arXiv: 1009.5147 | DOI | MR | Zbl
[3] Cautis S., Licata A., Sussan J., “Braid group actions via categorified Heisenberg complexes”, Compos. Math., 150 (2014), 105–142, arXiv: 1207.5245 | DOI | MR | Zbl
[4] Diestel R., Graph theory, Graduate Texts in Mathematics, 173, 4th ed., Springer, Heidelberg, 2010 http://diestel-graph-theory.com/ | DOI | MR | Zbl
[5] Huerfano R. S., Khovanov M., “A category for the adjoint representation”, J. Algebra, 246 (2001), 514–542, arXiv: math.QA/0002060 | DOI | MR | Zbl
[6] Kock J., Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, 59, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[7] Rosso D., Savage A., A general approach to Heisenberg categorification via wreath product algebras, arXiv: 1507.06298
[8] Sunada T., Topological crystallography. With a view towards discrete geometric analysis, Surveys and Tutorials in the Applied Mathematical Sciences, 6, Springer, Tokyo, 2013 | DOI | MR | Zbl
[9] Zimmermann A., Representation theory. A homological algebra point of view, Algebra and Applications, 19, Springer, Cham, 2014 | DOI | MR | Zbl