@article{SIGMA_2016_12_a60,
author = {Yuto Yamamoto},
title = {Geometric {Monodromy} around the {Tropical} {Limit}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a60/}
}
Yuto Yamamoto. Geometric Monodromy around the Tropical Limit. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a60/
[1] Abouzaid M., “Homogeneous coordinate rings and mirror symmetry for toric varieties”, Geom. Topol., 10 (2006), 1097–1157, arXiv: math.SG/0511644 | DOI | MR
[2] Diemer C., Katzarkov L., Kerr G., “Symplectomorphism group relations and degenerations of Landau–Ginzburg models”, arXiv: 1204.2233
[3] Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008 | MR | Zbl
[4] Iwao S., Complex integration vs tropical integration, Lecture at The Mathematical Society of Japan Autum Meeting (2010) http://mathsoc.jp/videos/2010shuuki.html
[5] Kajiwara T., Tropical toric varieties, Preprint, Tohoku University, 2007
[6] Kajiwara T., “Tropical toric geometry”, Toric Topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 197–207 | DOI | MR | Zbl
[7] Maclagan D., Sturmfels B., Introduction to tropical geometry, Graduate Studies in Mathematics, 161, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl
[8] Mikhalkin G., “Decomposition into pairs-of-pants for complex algebraic hypersurfaces”, Topology, 43 (2004), 1035–1065, arXiv: math.GT/0205011 | DOI | MR | Zbl
[9] Rullgård H., Polynomial amoebas and convexity, Preprint, Stockholm University, 2001 http://www2.math.su.se/reports/2001/8/2001-8.pdf
[10] Zharkov I., “Torus fibrations of Calabi–Yau hypersurfaces in toric varieties”, Duke Math. J., 101 (2000), 237–257, arXiv: math.AG/9806091 | DOI | MR | Zbl