Geometric Monodromy around the Tropical Limit
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{V_q\}_{q}$ be a complex one-parameter family of smooth hypersurfaces in a toric variety. In this paper, we give a concrete description of the monodromy transformation of $\{V_q\}_q$ around $q=\infty$ in terms of tropical geometry. The main tool is the tropical localization introduced by Mikhalkin.
Keywords: tropical geometry; monodromy.
@article{SIGMA_2016_12_a60,
     author = {Yuto Yamamoto},
     title = {Geometric {Monodromy} around the {Tropical} {Limit}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a60/}
}
TY  - JOUR
AU  - Yuto Yamamoto
TI  - Geometric Monodromy around the Tropical Limit
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a60/
LA  - en
ID  - SIGMA_2016_12_a60
ER  - 
%0 Journal Article
%A Yuto Yamamoto
%T Geometric Monodromy around the Tropical Limit
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a60/
%G en
%F SIGMA_2016_12_a60
Yuto Yamamoto. Geometric Monodromy around the Tropical Limit. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a60/

[1] Abouzaid M., “Homogeneous coordinate rings and mirror symmetry for toric varieties”, Geom. Topol., 10 (2006), 1097–1157, arXiv: math.SG/0511644 | DOI | MR

[2] Diemer C., Katzarkov L., Kerr G., “Symplectomorphism group relations and degenerations of Landau–Ginzburg models”, arXiv: 1204.2233

[3] Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008 | MR | Zbl

[4] Iwao S., Complex integration vs tropical integration, Lecture at The Mathematical Society of Japan Autum Meeting (2010) http://mathsoc.jp/videos/2010shuuki.html

[5] Kajiwara T., Tropical toric varieties, Preprint, Tohoku University, 2007

[6] Kajiwara T., “Tropical toric geometry”, Toric Topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 197–207 | DOI | MR | Zbl

[7] Maclagan D., Sturmfels B., Introduction to tropical geometry, Graduate Studies in Mathematics, 161, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl

[8] Mikhalkin G., “Decomposition into pairs-of-pants for complex algebraic hypersurfaces”, Topology, 43 (2004), 1035–1065, arXiv: math.GT/0205011 | DOI | MR | Zbl

[9] Rullgård H., Polynomial amoebas and convexity, Preprint, Stockholm University, 2001 http://www2.math.su.se/reports/2001/8/2001-8.pdf

[10] Zharkov I., “Torus fibrations of Calabi–Yau hypersurfaces in toric varieties”, Duke Math. J., 101 (2000), 237–257, arXiv: math.AG/9806091 | DOI | MR | Zbl