Automorphisms of $\mathbb{C}^*$ Moduli Spaces Associated to a Riemann Surface
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We compute the automorphism groups of the Dolbeault, de Rham and Betti moduli spaces for the multiplicative group $\mathbb{C}^*$ associated to a compact connected Riemann surface.
Keywords: holomorphic connection; Higgs bundle; character variety; automorphism.
@article{SIGMA_2016_12_a6,
     author = {David Baraglia and Indranil Biswas and Laura P. Schaposnik},
     title = {Automorphisms of $\mathbb{C}^*$ {Moduli} {Spaces} {Associated} to a {Riemann} {Surface}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a6/}
}
TY  - JOUR
AU  - David Baraglia
AU  - Indranil Biswas
AU  - Laura P. Schaposnik
TI  - Automorphisms of $\mathbb{C}^*$ Moduli Spaces Associated to a Riemann Surface
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a6/
LA  - en
ID  - SIGMA_2016_12_a6
ER  - 
%0 Journal Article
%A David Baraglia
%A Indranil Biswas
%A Laura P. Schaposnik
%T Automorphisms of $\mathbb{C}^*$ Moduli Spaces Associated to a Riemann Surface
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a6/
%G en
%F SIGMA_2016_12_a6
David Baraglia; Indranil Biswas; Laura P. Schaposnik. Automorphisms of $\mathbb{C}^*$ Moduli Spaces Associated to a Riemann Surface. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a6/

[1] Atiyah M. F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl

[2] Baraglia D., Classification of the automorphism and isometry groups of Higgs bundle moduli spaces, arXiv: 1411.2228

[3] Baraglia D., Schaposnik L. P., “Higgs bundles and {$(A,B,A)$}-branes”, Comm. Math. Phys., 331 (2014), 1271–1300, arXiv: 1305.4638 | DOI | MR | Zbl

[4] Baraglia D., Schaposnik L. P., “Real structures on moduli spaces of Higgs bundles”, Adv. Theor. Math. Phys. (to appear) , arXiv: 1309.1195

[5] Brion M., “Anti-affine algebraic groups”, J. Algebra, 321 (2009), 934–952, arXiv: 0710.5211 | DOI | MR | Zbl

[6] Farkas H. M., Kra I., Riemann surfaces, Graduate Texts in Mathematics, 71, Springer-Verlag, New York–Berlin, 1980 | DOI | MR | Zbl

[7] Goldman W. M., “The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54 (1984), 200–225 | DOI | MR | Zbl

[8] Griffiths P., Harris J., Principles of algebraic geometry, Wiley Classics Library, John Wiley Sons, Inc., New York, 1994 | DOI | MR | Zbl

[9] Kapustin A., Witten E., “Electric-magnetic duality and the geometric Langlands program”, Commun. Number Theory Phys., 1 (2007), 1–236, arXiv: hep-th/0604151 | DOI | MR | Zbl

[10] Mazur B., Messing W., Universal extensions and one dimensional crystalline cohomology, Lecture Notes in Math., 370, Springer-Verlag, Berlin–New York, 1974 | DOI | MR | Zbl

[11] Mumford D., Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Hindustan Book Agency, New Delhi, 2008 | MR

[12] Simpson C. T., “Moduli of representations of the fundamental group of a smooth projective variety, II”, Inst. Hautes Études Sci. Publ. Math., 1994, 5–79 | DOI | MR

[13] Weil A., “Zum Beweis des Torellischen Satzes”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. IIa, 1957, 33–53 | MR