@article{SIGMA_2016_12_a59,
author = {Keno Eilers},
title = {Modular {Form} {Representation} for {Periods} of {Hyperelliptic} {Integrals}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a59/}
}
Keno Eilers. Modular Form Representation for Periods of Hyperelliptic Integrals. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a59/
[1] Baker H. F., An introduction to the theory of multiply periodic functions, Cambridge University Press, Cambridge, 1897
[2] Baker H. F., An introduction to the theory of multiply periodic functions, Cambridge University Press, Cambridge, 1907 | Zbl
[3] Buchstaber V. M., Enolski V. Z., Leykin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10 (1997), 3–120 | Zbl
[4] Eilbeck J. C., Eilers K., Enolski V. Z., “Periods of second kind differentials of $(n,s)$-curves”, Trans. Moscow Math. Soc., 2013, 245–260, arXiv: 1305.3201 | DOI | MR | Zbl
[5] Enolski V., Hartmann B., Kagramanova V., Kunz J., Lämmerzahl C., Sirimachan P., “Inversion of a general hyperelliptic integral and particle motion in Hořava–Lifshitz black hole space-times”, J. Math. Phys., 53 (2012), 012504, 35 pp., arXiv: 1011.6459 | DOI | MR | Zbl
[6] Farkas H. M., Kra I., Riemann surfaces, Graduate Texts in Mathematics, 71, Springer-Verlag, New York–Berlin, 1980 | DOI | MR | Zbl
[7] Fay J. D., Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl
[8] Klein F., “Ueber hyperelliptische Sigmafunctionen”, Math. Ann., 27 (1886), 431–464 | DOI | MR
[9] Klein F., “Ueber hyperelliptische Sigmafunctionen”, Math. Ann., 32 (1888), 351–380 | DOI | MR
[10] Korotkin D., Shramchenko V., “On higher genus Weierstrass sigma-function”, Phys. D, 241 (2012), 2086–2094, arXiv: 1201.3961 | DOI | MR | Zbl