Noncommutative Differential Geometry of Generalized Weyl Algebras
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Elements of noncommutative differential geometry of ${\mathbb Z}$-graded generalized Weyl algebras ${\mathcal A}(p;q)$ over the ring of polynomials in two variables and their zero-degree subalgebras ${\mathcal B}(p;q)$, which themselves are generalized Weyl algebras over the ring of polynomials in one variable, are discussed. In particular, three classes of skew derivations of ${\mathcal A}(p;q)$ are constructed, and three-dimensional first-order differential calculi induced by these derivations are described. The associated integrals are computed and it is shown that the dimension of the integral space coincides with the order of the defining polynomial $p(z)$. It is proven that the restriction of these first-order differential calculi to the calculi on ${\mathcal B}(p;q)$ is isomorphic to the direct sum of degree 2 and degree $-2$ components of ${\mathcal A}(p;q)$. A Dirac operator for ${\mathcal B}(p;q)$ is constructed from a (strong) connection with respect to this differential calculus on the (free) spinor bimodule defined as the direct sum of degree 1 and degree $-1$ components of ${\mathcal A}(p;q)$. The real structure of ${\rm KO}$-dimension two for this Dirac operator is also described.
Keywords: generalized Weyl algebra; skew derivation; differential calculus; principal comodule algebra; strongly graded algebra; Dirac operator.
@article{SIGMA_2016_12_a58,
     author = {Tomasz Brzezi\'nski},
     title = {Noncommutative {Differential} {Geometry} of {Generalized} {Weyl} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a58/}
}
TY  - JOUR
AU  - Tomasz Brzeziński
TI  - Noncommutative Differential Geometry of Generalized Weyl Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a58/
LA  - en
ID  - SIGMA_2016_12_a58
ER  - 
%0 Journal Article
%A Tomasz Brzeziński
%T Noncommutative Differential Geometry of Generalized Weyl Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a58/
%G en
%F SIGMA_2016_12_a58
Tomasz Brzeziński. Noncommutative Differential Geometry of Generalized Weyl Algebras. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a58/

[1] Bavula V., “Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras”, Bull. Sci. Math., 120 (1996), 293–335 | MR | Zbl

[2] Beggs E. J., Majid S., Spectral triples from bimodule connections and Chern connections, arXiv: 1508.04808

[3] Beggs E. J., Smith S. P., “Non-commutative complex differential geometry”, J. Geom. Phys., 72 (2013), 7–33, arXiv: 1209.3595 | DOI | MR | Zbl

[4] Brzeziński T., “Non-commutative connections of the second kind”, J. Algebra Appl., 7 (2008), 557–573, arXiv: 0802.0445 | DOI | MR | Zbl

[5] Brzeziński T., “Circle and line bundles over generalized Weyl algebras”, Algebr. Represent. Theory, 19 (2016), 57–69, arXiv: 1405.3105 | DOI | MR | Zbl

[6] Brzeziński T., El Kaoutit L., Lomp C., “Non-commutative integral forms and twisted multi-derivations”, J. Noncommut. Geom., 4 (2010), 289–312, arXiv: 0901.2710 | DOI | MR

[7] Brzeziński T., Fairfax S. A., “Quantum teardrops”, Comm. Math. Phys., 316 (2012), 151–170, arXiv: 1107.1417 | DOI | MR | Zbl

[8] Brzeziński T., Hajac P. M., “The Chern–Galois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl

[9] Brzeziński T., Majid S., “Quantum group gauge theory on quantum spaces”, Comm. Math. Phys., 157 (1993), 591–638, arXiv: ; Erratum, Comm. Math. Phys., 167 (1995), 235–235 hep-th/9208007 | DOI | MR | Zbl | DOI | MR | Zbl

[10] Brzeziński T., Sitarz A., “Smooth geometry of the noncommutative pillow, cones and lens spaces”, J. Noncommut. Geom. (to appear) , arXiv: 1410.6587 | DOI

[11] Connes A., “Noncommutative geometry and reality”, J. Math. Phys., 36 (1995), 6194–6231 | DOI | MR | Zbl

[12] Dade E. C., “Compounding Clifford's theory”, Ann. of Math., 91 (1970), 236–290 | DOI | MR | Zbl

[13] Dade E. C., “Group-graded rings and modules”, Math. Z., 174 (1980), 241–262 | DOI | MR | Zbl

[14] Hajac P. M., “Strong connections on quantum principal bundles”, Comm. Math. Phys., 182 (1996), 579–617, arXiv: hep-th/9406129 | DOI | MR | Zbl

[15] Hong J. H., Szymański W., “Quantum lens spaces and graph algebras”, Pacific J. Math., 211 (2003), 249–263 | DOI | MR | Zbl

[16] Khalkhali M., Landi G., van Suijlekom W. D., “Holomorphic structures on the quantum projective line”, Int. Math. Res. Not., 2011 (2011), 851–884, arXiv: 0907.0154 | DOI | MR | Zbl

[17] Krähmer U., “On the Hochschild (co)homology of quantum homogeneous spaces”, Israel J. Math., 189 (2012), 237–266 | DOI | MR

[18] Liu L., “Homological smoothness and deformations of generalized Weyl algebras”, Israel J. Math., 209 (2015), 949–992, arXiv: 1304.7117 | DOI | MR | Zbl

[19] Lunts V. A., Rosenberg A. L., Kashiwara theorem for hyperbolic algebras, Preprint MPIM-1999-82, 1999

[20] Majid S., “Noncommutative Riemannian and spin geometry of the standard $q$-sphere”, Comm. Math. Phys., 256 (2005), 255–285, arXiv: math.QA/0307351 | DOI | MR | Zbl

[21] N{ă}st{ă}sescu C., van Oystaeyen F., Graded ring theory, North-Holland Mathematical Library, 28, North-Holland Publishing Co., Amsterdam–New York, 1982 | MR

[22] Podleś P., Lett. Math. Phys., 14 (1987), Quantum spheres | DOI | MR

[23] van den Bergh M., “A relation between Hochschild homology and cohomology for Gorenstein rings”, Proc. Amer. Math. Soc., 126 (1998), 1345–1348 | DOI | MR | Zbl

[24] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl

[25] Woronowicz S. L., “Twisted ${\rm SU}(2)$ group. An example of a noncommutative differential calculus”, Publ. Res. Inst. Math. Sci., 23 (1987), 117–181 | DOI | MR | Zbl