@article{SIGMA_2016_12_a58,
author = {Tomasz Brzezi\'nski},
title = {Noncommutative {Differential} {Geometry} of {Generalized} {Weyl} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a58/}
}
Tomasz Brzeziński. Noncommutative Differential Geometry of Generalized Weyl Algebras. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a58/
[1] Bavula V., “Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras”, Bull. Sci. Math., 120 (1996), 293–335 | MR | Zbl
[2] Beggs E. J., Majid S., Spectral triples from bimodule connections and Chern connections, arXiv: 1508.04808
[3] Beggs E. J., Smith S. P., “Non-commutative complex differential geometry”, J. Geom. Phys., 72 (2013), 7–33, arXiv: 1209.3595 | DOI | MR | Zbl
[4] Brzeziński T., “Non-commutative connections of the second kind”, J. Algebra Appl., 7 (2008), 557–573, arXiv: 0802.0445 | DOI | MR | Zbl
[5] Brzeziński T., “Circle and line bundles over generalized Weyl algebras”, Algebr. Represent. Theory, 19 (2016), 57–69, arXiv: 1405.3105 | DOI | MR | Zbl
[6] Brzeziński T., El Kaoutit L., Lomp C., “Non-commutative integral forms and twisted multi-derivations”, J. Noncommut. Geom., 4 (2010), 289–312, arXiv: 0901.2710 | DOI | MR
[7] Brzeziński T., Fairfax S. A., “Quantum teardrops”, Comm. Math. Phys., 316 (2012), 151–170, arXiv: 1107.1417 | DOI | MR | Zbl
[8] Brzeziński T., Hajac P. M., “The Chern–Galois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl
[9] Brzeziński T., Majid S., “Quantum group gauge theory on quantum spaces”, Comm. Math. Phys., 157 (1993), 591–638, arXiv: ; Erratum, Comm. Math. Phys., 167 (1995), 235–235 hep-th/9208007 | DOI | MR | Zbl | DOI | MR | Zbl
[10] Brzeziński T., Sitarz A., “Smooth geometry of the noncommutative pillow, cones and lens spaces”, J. Noncommut. Geom. (to appear) , arXiv: 1410.6587 | DOI
[11] Connes A., “Noncommutative geometry and reality”, J. Math. Phys., 36 (1995), 6194–6231 | DOI | MR | Zbl
[12] Dade E. C., “Compounding Clifford's theory”, Ann. of Math., 91 (1970), 236–290 | DOI | MR | Zbl
[13] Dade E. C., “Group-graded rings and modules”, Math. Z., 174 (1980), 241–262 | DOI | MR | Zbl
[14] Hajac P. M., “Strong connections on quantum principal bundles”, Comm. Math. Phys., 182 (1996), 579–617, arXiv: hep-th/9406129 | DOI | MR | Zbl
[15] Hong J. H., Szymański W., “Quantum lens spaces and graph algebras”, Pacific J. Math., 211 (2003), 249–263 | DOI | MR | Zbl
[16] Khalkhali M., Landi G., van Suijlekom W. D., “Holomorphic structures on the quantum projective line”, Int. Math. Res. Not., 2011 (2011), 851–884, arXiv: 0907.0154 | DOI | MR | Zbl
[17] Krähmer U., “On the Hochschild (co)homology of quantum homogeneous spaces”, Israel J. Math., 189 (2012), 237–266 | DOI | MR
[18] Liu L., “Homological smoothness and deformations of generalized Weyl algebras”, Israel J. Math., 209 (2015), 949–992, arXiv: 1304.7117 | DOI | MR | Zbl
[19] Lunts V. A., Rosenberg A. L., Kashiwara theorem for hyperbolic algebras, Preprint MPIM-1999-82, 1999
[20] Majid S., “Noncommutative Riemannian and spin geometry of the standard $q$-sphere”, Comm. Math. Phys., 256 (2005), 255–285, arXiv: math.QA/0307351 | DOI | MR | Zbl
[21] N{ă}st{ă}sescu C., van Oystaeyen F., Graded ring theory, North-Holland Mathematical Library, 28, North-Holland Publishing Co., Amsterdam–New York, 1982 | MR
[22] Podleś P., Lett. Math. Phys., 14 (1987), Quantum spheres | DOI | MR
[23] van den Bergh M., “A relation between Hochschild homology and cohomology for Gorenstein rings”, Proc. Amer. Math. Soc., 126 (1998), 1345–1348 | DOI | MR | Zbl
[24] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl
[25] Woronowicz S. L., “Twisted ${\rm SU}(2)$ group. An example of a noncommutative differential calculus”, Publ. Res. Inst. Math. Sci., 23 (1987), 117–181 | DOI | MR | Zbl