Singular Instantons and Painlevé VI
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257–291], invariant under the irreducible action of $\mathrm{SU}_2$ on $S^4$, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations ($\mathrm{P_{VI}}$) and we will give an explicit expression of the map between instantons and solutions to $\mathrm{P_{VI}}$. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of $S^4$. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215–222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036–1047, arXiv:1602.07221], where instantons without singularities are studied.
Keywords: twistor theory; Yang–Mills instantons; isomonodromic deformations.
@article{SIGMA_2016_12_a56,
     author = {Richard Mu\~niz Manasliski},
     title = {Singular {Instantons} and {Painlev\'e~VI}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a56/}
}
TY  - JOUR
AU  - Richard Muñiz Manasliski
TI  - Singular Instantons and Painlevé VI
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a56/
LA  - en
ID  - SIGMA_2016_12_a56
ER  - 
%0 Journal Article
%A Richard Muñiz Manasliski
%T Singular Instantons and Painlevé VI
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a56/
%G en
%F SIGMA_2016_12_a56
Richard Muñiz Manasliski. Singular Instantons and Painlevé VI. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a56/

[1] Boalch P., “From Klein to Painlevé via Fourier, Laplace and Jimbo”, Proc. London Math. Soc., 90 (2005), 167–208, arXiv: math.AG/0308221 | DOI | MR | Zbl

[2] Boalch P., “Six results on Painlevé VI”, Théories asymptotiques et équations de Painlevé, Sémin. Congr., 14, Soc. Math. France, Paris, 2006, 1–20, arXiv: math.AG/0503043 | MR | Zbl

[3] Bor G., “Yang–Mills fields which are not self-dual”, Comm. Math. Phys., 145 (1992), 393–410 | DOI | MR | Zbl

[4] Bor G., Montgomery R., “${\rm SO}(3)$ invariant Yang–Mills fields which are not self-dual”, Hamiltonian Systems, Transformation Groups and Spectral Transform Methods (Montreal, PQ, 1989), Université de Montréal, Montréal, QC, 1990, 191–198 | MR

[5] Bor G., Segert J., “Symmetric instantons and the ADHM construction”, Comm. Math. Phys., 183 (1997), 183–203 | DOI | MR | Zbl

[6] Chang L. N., Chang N. P., “Instantons with fractional topological charge”, Phys. Lett. B, 72 (1977), 341–342 | DOI

[7] Dubrovin B., Mazzocco M., “Monodromy of certain Painlevé-VI transcendents and reflection groups”, Invent. Math., 141 (2000), 55–147, arXiv: math.AG/9806056 | DOI | MR | Zbl

[8] Fuchs R., “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen”, Math. Ann., 63 (1907), 301–321 | DOI | MR | Zbl

[9] Gamayun O., Iorgov N., Lisovyy O., “Conformal field theory of Painlevé VI”, J. High Energy Phys., 2012:10 (2012), 038, 25 pp., arXiv: 1207.0787 | DOI | MR

[10] Hitchin N. J., “Twistor spaces, Einstein metrics and isomonodromic deformations”, J. Differential Geom., 42 (1995), 30–112 | MR | Zbl

[11] Hitchin N. J., “A lecture on the octahedron”, Bull. London Math. Soc., 35 (2003), 577–600 | DOI | MR | Zbl

[12] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl

[13] Kronheimer P. B., Mrowka T. S., “Gauge theory for embedded surfaces, I”, Topology, 32 (1993), 773–826 | DOI | MR | Zbl

[14] Lisovyy O., Tykhyy Y., “Algebraic solutions of the sixth Painlevé equation”, J. Geom. Phys., 85 (2014), 124–163, arXiv: 0809.4873 | DOI | MR | Zbl

[15] Mahoux G., “Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients”, The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 35–76 | DOI | MR | Zbl

[16] Mason L. J., Woodhouse N. M. J., “Self-duality and the Painlevé transcendents”, Nonlinearity, 6 (1993), 569–581 | DOI | MR | Zbl

[17] Mason L. J., Woodhouse N. M. J., Integrability, self-duality, and twistor theory, Oxford Science Publications, London Mathematical Society Monographs. New Series, 15, The Clarendon Press, Oxford University Press, New York, 1996 | MR

[18] Mazzocco M., “Rational solutions of the Painlevé VI equation”, J. Phys. A: Math. Gen., 34 (2001), 2281–2294 | DOI | MR | Zbl

[19] Muñiz Manasliski R., “Painlevé VI equation from invariant instantons”, Geometric and Topological Methods for Quantum Field Theory, Contemp. Math., 434, Amer. Math. Soc., Providence, RI, 2007, 215–222 | DOI | MR | Zbl

[20] Muñiz Manasliski R., “Isomonodromic deformations and ${\rm SU}_2$-invariant instantons on $S^4$”, J. Geom. Phys., 59 (2009), 1036–1047, arXiv: 1602.07221 | DOI | MR | Zbl

[21] Okamoto K., “Studies on the Painlevé equations. I. Sixth Painlevé equation $P_{{\rm VI}}$”, Ann. Mat. Pura Appl., 146 (1987), 337–381 | DOI | MR | Zbl

[22] Sadun L., “A symmetric family of Yang–Mills fields”, Comm. Math. Phys., 163 (1994), 257–291 | DOI | MR

[23] Watanabe H., “Birational canonical transformations and classical solutions of the sixth Painlevé equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27 (1998), 379–425 | MR | Zbl

[24] Woodhouse N. M. J., J. Phys. A: Math. Gen., 39 (2006), Two twistor descriptions of the isomonodromy problem, arXiv: nlin.SI/0312060 | DOI | MR