The Multi-Orientable Random Tensor Model, a Review
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the $1/N$ expansion and of the large $N$ limit ($N$ being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit.
Keywords: random tensor models; asymptotic expansions.
@article{SIGMA_2016_12_a55,
     author = {Adrian Tanasa},
     title = {The {Multi-Orientable} {Random} {Tensor} {Model,} a {Review}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a55/}
}
TY  - JOUR
AU  - Adrian Tanasa
TI  - The Multi-Orientable Random Tensor Model, a Review
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a55/
LA  - en
ID  - SIGMA_2016_12_a55
ER  - 
%0 Journal Article
%A Adrian Tanasa
%T The Multi-Orientable Random Tensor Model, a Review
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a55/
%G en
%F SIGMA_2016_12_a55
Adrian Tanasa. The Multi-Orientable Random Tensor Model, a Review. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a55/

[1] Ambjørn J., Durhuus B., Jónsson T., “Three-dimensional simplicial quantum gravity and generalized matrix models”, Modern Phys. Lett. A, 6 (1991), 1133–1146 | DOI | MR | Zbl

[2] Avohou R. C., Rivasseau V., Tanasa A., “Renormalization and Hopf algebraic structure of the five-dimensional quartic tensor field theory”, J. Phys. A: Math. Theor., 48 (2015), 485204, 20 pp., arXiv: 1507.03548 | DOI | MR | Zbl

[3] Baratin A., Oriti D., “Ten questions on Group Field Theory (and their tentative answers)”, J. Phys. Conf. Ser., 360 (2012), 012002, 10 pp., arXiv: 1112.3270 | DOI

[4] Ben Geloun J., Ramgoolam S., “Counting tensor model observables and branched covers of the 2-sphere”, Ann. Inst. Henri Poincaré D, 1 (2014), 77–138, arXiv: 1307.6490 | DOI | MR | Zbl

[5] Ben Geloun J., Rivasseau V., “A renormalizable 4-dimensional tensor field theory”, Comm. Math. Phys., 318 (2013), 69–109, arXiv: 1111.4997 | DOI | MR | Zbl

[6] Bonzom V., Combes F., “The calculation of expectation values in Gaussian random tensor theory via meanders”, Ann. Inst. Henri Poincaré D, 1 (2014), 443–485, arXiv: 1310.3606 | DOI | MR | Zbl

[7] Bonzom V., Combes F., “Tensor models from the viewpoint of matrix models: the cases of loop models on random surfaces and of the Gaussian distribution”, Ann. Inst. Henri Poincaré D, 2 (2015), 1–47, arXiv: 1304.4152 | DOI | MR | Zbl

[8] Bouttier J., Di Francesco P., Guitter E., “Geodesic distance in planar graphs”, Nuclear Phys. B, 663 (2003), 535–567, arXiv: cond-mat/0303272 | DOI | MR | Zbl

[9] Brézin É., Kazakov V. A., “Exactly solvable field theories of closed strings”, Phys. Lett. B, 236 (1990), 144–150 | DOI | MR

[10] Carrozza S., Tensorial methods and renormalization in group field theories, Springer Theses, Springer, Cham, 2014, arXiv: 1310.3736 | DOI | MR | Zbl

[11] Carrozza S., “Discrete renormalization group for $\rm SU(2)$ tensorial group field theory”, Ann. Inst. Henri Poincaré D, 2 (2015), 49–112, arXiv: 1407.4615 | DOI | MR | Zbl

[12] Dartois S., Gurau R., Rivasseau V., “Double scaling in tensor models with a quartic interaction”, J. High Energy Phys., 2013:9 (2013), 088, 33 pp., arXiv: 1307.5281 | DOI | MR

[13] Dartois S., Rivasseau V., Tanasa A., “The $1/N$ expansion of multi-orientable random tensor models”, Ann. Henri Poincaré, 15 (2014), 965–984, arXiv: 1301.1535 | DOI | MR | Zbl

[14] Di Francesco P., Ginsparg P., Zinn-Justin J., “$2$D gravity and random matrices”, Phys. Rep., 254 (1995), 1–133, arXiv: hep-th/9306153 | DOI | MR

[15] Douglas M. R., Shenker S. H., “Strings in less than one dimension”, Nuclear Phys. B, 335 (1990), 635–654 | DOI | MR

[16] Flajolet P., Sedgewick R., Analytic combinatorics, Cambridge University Press, Cambridge, 2009 | DOI | MR | Zbl

[17] Freidel L., “Group field theory: an overview”, Internat. J. Theoret. Phys., 44 (2005), 1769–1783, arXiv: hep-th/0505016 | DOI | MR | Zbl

[18] Freidel L., Gurau R., “Group field theory renormalization in the 3D case: power counting of divergences”, Phys. Rev. D, 80 (2009), 044007, 20 pp., arXiv: 0905.3772 | DOI | MR

[19] Fusy E., Tanasa A., “Asymptotic expansion of the multi-orientable random tensor model”, Electron. J. Combin., 22 (2015), 1.52, 30 pp., arXiv: 1408.5725 | MR | Zbl

[20] Gross D. J., Migdal A. A., “Nonperturbative two-dimensional quantum gravity”, Phys. Rev. Lett., 64 (1990), 127–130 | DOI | MR | Zbl

[21] Gurau R., “The $1/N$ expansion of colored tensor models”, Ann. Henri Poincaré, 12 (2011), 829–847, arXiv: 1011.2726 | DOI | MR | Zbl

[22] Gurau R., “Colored group field theory”, Comm. Math. Phys., 304 (2011), 69–93, arXiv: 0907.2582 | DOI | MR | Zbl

[23] Gurau R., Rivasseau V., “The $1/N$ expansion of colored tensor models in arbitrary dimension”, Europhys. Lett., 95 (2011), 50004, 5 pp., arXiv: 1101.4182 | DOI | MR

[24] Gurau R., Ryan J. P., “Colored tensor models – a review”, SIGMA, 8 (2012), 020, 78 pp., arXiv: 1109.4812 | DOI | MR | Zbl

[25] Gurau R., Ryan J. P., “Melons are branched polymers”, Ann. Henri Poincaré, 15 (2014), 2085–2131, arXiv: 1302.4386 | DOI | MR | Zbl

[26] Gurau R., Schaeffer G., Regular colored graphs of positive degree, arXiv: 1307.5279

[27] Gurau R., Tanasa A., Youmans D. R., “The double scaling limit of the multi-orientable tensor model”, Europhys. Lett., 111 (2015), 21002, 6 pp., arXiv: 1505.00586 | DOI

[28] Oriti D. (ed.), Approaches to quantum gravity: toward a new understanding of space, time and matter, Cambridge University Press, Cambridge, 2009 | Zbl

[29] Oriti D., “The quantum geometry of tensorial group field theories”, Symmetries and Groups in Contemporary Physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., 11, World Sci. Publ., Hackensack, NJ, 2013, 379–384, arXiv: 1211.5714 | DOI | MR | Zbl

[30] Raasakka M., Tanasa A., “Combinatorial Hopf algebra for the Ben Geloun–Rivasseau tensor field theory”, Sém. Lothar. Combin., 70 (2013), B70d, 29 pp., arXiv: 1306.1022 | MR

[31] Raasakka M., Tanasa A., “Next-to-leading order in the large $N$ expansion of the multi-orientable random tensor model”, Ann. Henri Poincaré, 16 (2015), 1267–1281, arXiv: 1310.3132 | DOI | MR | Zbl

[32] Rivasseau V., “Non-commutative renormalization”, Quantum Spaces, Prog. Math. Phys., 53, Birkhäuser, Basel, 2007, 19–107 | DOI | MR | Zbl

[33] Rivasseau V., “The tensor track, III”, Fortschr. Phys., 62 (2014), 81–107, arXiv: 1311.1461 | DOI | MR | Zbl

[34] Sasakura N., “Tensor model for gravity and orientability of manifold”, Modern Phys. Lett. A, 6 (1991), 2613–2623 | DOI | MR | Zbl

[35] Schaeffer G., “Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees”, Electron. J. Combin., 4 (1997), 20, 14 pp. | MR

[36] Tanasa A., “Combinatorics of random tensor models”, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 13 (2012), 27–31, arXiv: 1203.5304 | MR

[37] Tanasa A., “Multi-orientable group field theory”, J. Phys. A: Math. Theor., 45 (2012), 165401, 19 pp., arXiv: 1109.0694 | DOI | MR | Zbl

[38] Tanasa A., “Tensor models, a quantum field theoretical particularization”, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 13 (2012), 225–234, arXiv: 1211.4444 | MR