A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using $R$-matrices for $U_q(\mathfrak{sl}_N)$. Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld–Kohno theorem for Knizhnik–Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.
Keywords: generalized double affine Hecke algebra; $R$-matrix; Drinfeld–Kohno theorem.
@article{SIGMA_2016_12_a54,
     author = {Yuchen Fu and Seth Shelley-Abrahamson},
     title = {A {Family} of {Finite-Dimensional} {Representations} of {Generalized} {Double} {Affine} {Hecke} {Algebras} of {Higher} {Rank}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a54/}
}
TY  - JOUR
AU  - Yuchen Fu
AU  - Seth Shelley-Abrahamson
TI  - A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a54/
LA  - en
ID  - SIGMA_2016_12_a54
ER  - 
%0 Journal Article
%A Yuchen Fu
%A Seth Shelley-Abrahamson
%T A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a54/
%G en
%F SIGMA_2016_12_a54
Yuchen Fu; Seth Shelley-Abrahamson. A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a54/

[1] Arakawa T., Suzuki T., “Duality between ${\mathfrak{sl}}_n({\mathbb C})$ and the degenerate affine Hecke algebra”, J. Algebra, 209 (1998), 288–304 | DOI | MR | Zbl

[2] Calaque D., Enriquez B., Etingof P., “Universal KZB equations: the elliptic case”, Algebra, Arithmetic, and Geometry, in Honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 165–266, arXiv: math.QA/0702670 | DOI | MR | Zbl

[3] Drinfeld V. G., “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1989), 1419–1457 | MR

[4] Etingof P., Gan W. L., Oblomkov A., “Generalized double affine Hecke algebras of higher rank”, J. Reine Angew. Math., 600 (2006), 177–201, arXiv: math.QA/0504089 | DOI | MR | Zbl

[5] Etingof P., Oblomkov A., Rains E., “Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces”, Adv. Math., 212 (2007), 749–796, arXiv: math.QA/0406480 | DOI | MR | Zbl

[6] Etingof P. I., Frenkel I. B., Kirillov A. A. (Jr.), “Lectures on representation theory and Knizhnik–Zamolodchikov equations”, Mathematical Surveys and Monographs, 58, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl

[7] Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[8] Jantzen J. C., Lectures on quantum groups, Graduate Studies in Mathematics, 6, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl

[9] Jordan D., “Quantum $D$-modules, elliptic braid groups, and double affine Hecke algebras”, Int. Math. Res. Not., 2009 (2009), 2081–2105, arXiv: 0805.2766 | DOI | MR | Zbl

[10] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[11] Kazhdan D., Lusztig G., “Affine Lie algebras and quantum groups”, Int. Math. Res. Not., 1991 (1991), 21–29 | DOI | MR | Zbl

[12] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[13] Kohno T., “Monodromy representations of braid groups and Yang–Baxter equations”, Ann. Inst. Fourier (Grenoble), 37 (1987), 139–160 | DOI | MR | Zbl

[14] Montarani S., “Representations of Gan–Ginzburg algebras”, Selecta Math. (N.S.), 16 (2010), 631–671, arXiv: 1001.2588 | DOI | MR | Zbl

[15] Orellana R., Ram A., “Affine braids, Markov traces and the category ${\mathcal O}$”, Algebraic Groups and Homogeneous Spaces, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 423–473, arXiv: math.RT/0401317 | MR | Zbl