@article{SIGMA_2016_12_a54,
author = {Yuchen Fu and Seth Shelley-Abrahamson},
title = {A {Family} of {Finite-Dimensional} {Representations} of {Generalized} {Double} {Affine} {Hecke} {Algebras} of {Higher} {Rank}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a54/}
}
TY - JOUR AU - Yuchen Fu AU - Seth Shelley-Abrahamson TI - A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a54/ LA - en ID - SIGMA_2016_12_a54 ER -
%0 Journal Article %A Yuchen Fu %A Seth Shelley-Abrahamson %T A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a54/ %G en %F SIGMA_2016_12_a54
Yuchen Fu; Seth Shelley-Abrahamson. A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a54/
[1] Arakawa T., Suzuki T., “Duality between ${\mathfrak{sl}}_n({\mathbb C})$ and the degenerate affine Hecke algebra”, J. Algebra, 209 (1998), 288–304 | DOI | MR | Zbl
[2] Calaque D., Enriquez B., Etingof P., “Universal KZB equations: the elliptic case”, Algebra, Arithmetic, and Geometry, in Honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 165–266, arXiv: math.QA/0702670 | DOI | MR | Zbl
[3] Drinfeld V. G., “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1989), 1419–1457 | MR
[4] Etingof P., Gan W. L., Oblomkov A., “Generalized double affine Hecke algebras of higher rank”, J. Reine Angew. Math., 600 (2006), 177–201, arXiv: math.QA/0504089 | DOI | MR | Zbl
[5] Etingof P., Oblomkov A., Rains E., “Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces”, Adv. Math., 212 (2007), 749–796, arXiv: math.QA/0406480 | DOI | MR | Zbl
[6] Etingof P. I., Frenkel I. B., Kirillov A. A. (Jr.), “Lectures on representation theory and Knizhnik–Zamolodchikov equations”, Mathematical Surveys and Monographs, 58, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl
[7] Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[8] Jantzen J. C., Lectures on quantum groups, Graduate Studies in Mathematics, 6, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl
[9] Jordan D., “Quantum $D$-modules, elliptic braid groups, and double affine Hecke algebras”, Int. Math. Res. Not., 2009 (2009), 2081–2105, arXiv: 0805.2766 | DOI | MR | Zbl
[10] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[11] Kazhdan D., Lusztig G., “Affine Lie algebras and quantum groups”, Int. Math. Res. Not., 1991 (1991), 21–29 | DOI | MR | Zbl
[12] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[13] Kohno T., “Monodromy representations of braid groups and Yang–Baxter equations”, Ann. Inst. Fourier (Grenoble), 37 (1987), 139–160 | DOI | MR | Zbl
[14] Montarani S., “Representations of Gan–Ginzburg algebras”, Selecta Math. (N.S.), 16 (2010), 631–671, arXiv: 1001.2588 | DOI | MR | Zbl
[15] Orellana R., Ram A., “Affine braids, Markov traces and the category ${\mathcal O}$”, Algebraic Groups and Homogeneous Spaces, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 423–473, arXiv: math.RT/0401317 | MR | Zbl