@article{SIGMA_2016_12_a52,
author = {Marco Manetti and Giulia Ricciardi},
title = {Universal {Lie} {Formulas} for {Higher} {Antibrackets}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a52/}
}
Marco Manetti; Giulia Ricciardi. Universal Lie Formulas for Higher Antibrackets. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a52/
[1] Akman F., “On some generalizations of Batalin–Vilkovisky algebras”, J. Pure Appl. Algebra, 120 (1997), 105–141, arXiv: q-alg/9506027 | DOI | MR | Zbl
[2] Alfaro J., Damgaard P.H., “Non-abelian antibrackets”, Phys. Lett. B, 369 (1996), 289–294, arXiv: hep-th/9511066 | DOI | MR
[3] Aschenbrenner M., “Logarithms of iteration matrices, and proof of a conjecture by Shadrin and Zvonkine”, J. Combin. Theory Ser. A, 119 (2012), 627–654, arXiv: 1009.5518 | DOI | MR | Zbl
[4] Bandiera R., “Nonabelian higher derived brackets”, J. Pure Appl. Algebra, 219 (2015), 3292–3313, arXiv: 1304.4097 | DOI | MR | Zbl
[5] Bandiera R., “Formality of Kapranov's brackets in Kähler geometry via pre-Lie deformation theory”, Int. Math. Res. Not. (to appear) , arXiv: 1307.8066 | DOI
[6] Batalin I., Marnelius R., “Quantum antibrackets”, Phys. Lett. B, 434 (1998), 312–320, arXiv: hep-th/9805084 | DOI | MR
[7] Batalin I.A., Vilkovisky G.A., “Gauge algebra and quantization”, Phys. Lett. B, 102 (1981), 27–31 | DOI | MR
[8] Batalin I.A., Vilkovisky G.A., “Closure of the gauge algebra, generalized Lie equations and Feynman rules”, Nuclear Phys. B, 234 (1984), 106–124 | DOI | MR
[9] Batalin I.A., Vilkovisky G.A., “Existence theorem for gauge algebra”, J. Math. Phys., 26 (1985), 172–184 | DOI | MR
[10] Becchi C., Rouet A., Stora R., “The abelian Higgs–Kibble model, unitarity of the $S$-operator”, Phys. Lett. B, 52 (1974), 344–346 | DOI
[11] Becchi C., Rouet A., Stora R., “Renormalization of the abelian Higgs–Kibble model”, Comm. Math. Phys., 42 (1975), 127–162 | DOI | MR
[12] Becchi C., Rouet A., Stora R., “Renormalization of gauge theories”, Ann. Physics, 98 (1976), 287–321 | DOI | MR
[13] Bering K., “Non-commutative Batalin–Vilkovisky algebras, homotopy Lie algebras and the Courant bracket”, Comm. Math. Phys., 274 (2007), 297–341, arXiv: hep-th/0603116 | DOI | MR | Zbl
[14] Bering K., Damgaard P.H., Alfaro J., “Algebra of higher antibrackets”, Nuclear Phys. B, 478 (1996), 459–503, arXiv: hep-th/9604027 | DOI | MR | Zbl
[15] Dotsenko V., Shadrin S., Vallette B., “Pre-Lie deformation theory”, Mosc. Math. J. (to appear) , arXiv: 1502.03280
[16] Ecalle J., Théorie des invariants holomorphes, Publication Mathématiques d'Orsay, , 1974 http://sites.mathdoc.fr/PMO/PDF/E_ECALLE_67_74_09.pdf
[17] Fiorenza D., Manetti M., “Formality of Koszul brackets and deformations of holomorphic Poisson manifolds”, Homology Homotopy Appl., 14 (2012), 63–75, arXiv: 1109.4309 | DOI | MR | Zbl
[18] Getzler E., “Batalin–Vilkovisky algebras and two-dimensional topological field theories”, Comm. Math. Phys., 159 (1994), 265–285, arXiv: hep-th/9212043 | DOI | MR | Zbl
[19] Hanna P.D., Sequence, , The On-line Encyclopedia of Integer Sequences, 2010 http://oeis.org/A180609
[20] Koszul J.L., “Crochet de Schouten–Nijenhuis et cohomologie”, Astérisque, 1985, 257–271 | MR | Zbl
[21] Kravchenko O., “Deformations of Batalin–Vilkovisky algebras”, Poisson Geometry (Warsaw, 1998), Banach Center Publ., 51, Polish Acad. Sci., Warsaw, 2000, 131–139, arXiv: math.QA/9903191 | MR | Zbl
[22] Lada T., Markl M., “Strongly homotopy Lie algebras”, Comm. Algebra, 23 (1995), 2147–2161, arXiv: hep-th/9406095 | DOI | MR | Zbl
[23] Lada T., Stasheff J., “Introduction to SH Lie algebras for physicists”, Internat. J. Theoret. Phys., 32 (1993), 1087–1103, arXiv: hep-th/9209099 | DOI | MR | Zbl
[24] Manetti M., “Uniqueness and intrinsic properties of non-commutative Koszul brackets”, J. Homotopy Relat. Struct. (to appear) , arXiv: 1512.05480 | DOI
[25] Markl M., “Higher braces via formal (non)commutative geometry”, Geometric Methods in Physics, Trends in Mathematics, Springer International Publishing, 2015, 67–81, arXiv: 1411.6964 | DOI | MR | Zbl
[26] Markl M., “On the origin of higher braces and higher-order derivations”, J. Homotopy Relat. Struct., 10 (2015), 637–667, arXiv: 1309.7744 | DOI | MR | Zbl
[27] Nijenhuis A., Richardson Jr. R.W., “Deformations of Lie algebra structures”, J. Math. Mech., 17 (1967), 89–105 | MR | Zbl
[28] Shadrin S., Zvonkine D., “Changes of variables in ELSV-type formulas”, Michigan Math. J., 55 (2007), 209–228, arXiv: math.AG/0602457 | DOI | MR | Zbl
[29] Sloane N.A.J., Sequences, ; , The On-line Encyclopedia of Integer Sequences, 2010 A134242A134243
[30] Tyutin I.V., Gauge invariance in field theory and statistical physics in operator formalism, arXiv: 0812.0580