Universal Lie Formulas for Higher Antibrackets
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator $\Delta$ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis–Richardson brackets having as arguments $\Delta$ and the multiplication operators. As a byproduct, we can immediately extend higher antibrackets to noncommutative algebras in a way preserving the validity of generalized Jacobi identities.
Keywords: Lie superalgebras; higher brackets.
@article{SIGMA_2016_12_a52,
     author = {Marco Manetti and Giulia Ricciardi},
     title = {Universal {Lie} {Formulas} for {Higher} {Antibrackets}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a52/}
}
TY  - JOUR
AU  - Marco Manetti
AU  - Giulia Ricciardi
TI  - Universal Lie Formulas for Higher Antibrackets
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a52/
LA  - en
ID  - SIGMA_2016_12_a52
ER  - 
%0 Journal Article
%A Marco Manetti
%A Giulia Ricciardi
%T Universal Lie Formulas for Higher Antibrackets
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a52/
%G en
%F SIGMA_2016_12_a52
Marco Manetti; Giulia Ricciardi. Universal Lie Formulas for Higher Antibrackets. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a52/

[1] Akman F., “On some generalizations of Batalin–Vilkovisky algebras”, J. Pure Appl. Algebra, 120 (1997), 105–141, arXiv: q-alg/9506027 | DOI | MR | Zbl

[2] Alfaro J., Damgaard P.H., “Non-abelian antibrackets”, Phys. Lett. B, 369 (1996), 289–294, arXiv: hep-th/9511066 | DOI | MR

[3] Aschenbrenner M., “Logarithms of iteration matrices, and proof of a conjecture by Shadrin and Zvonkine”, J. Combin. Theory Ser. A, 119 (2012), 627–654, arXiv: 1009.5518 | DOI | MR | Zbl

[4] Bandiera R., “Nonabelian higher derived brackets”, J. Pure Appl. Algebra, 219 (2015), 3292–3313, arXiv: 1304.4097 | DOI | MR | Zbl

[5] Bandiera R., “Formality of Kapranov's brackets in Kähler geometry via pre-Lie deformation theory”, Int. Math. Res. Not. (to appear) , arXiv: 1307.8066 | DOI

[6] Batalin I., Marnelius R., “Quantum antibrackets”, Phys. Lett. B, 434 (1998), 312–320, arXiv: hep-th/9805084 | DOI | MR

[7] Batalin I.A., Vilkovisky G.A., “Gauge algebra and quantization”, Phys. Lett. B, 102 (1981), 27–31 | DOI | MR

[8] Batalin I.A., Vilkovisky G.A., “Closure of the gauge algebra, generalized Lie equations and Feynman rules”, Nuclear Phys. B, 234 (1984), 106–124 | DOI | MR

[9] Batalin I.A., Vilkovisky G.A., “Existence theorem for gauge algebra”, J. Math. Phys., 26 (1985), 172–184 | DOI | MR

[10] Becchi C., Rouet A., Stora R., “The abelian Higgs–Kibble model, unitarity of the $S$-operator”, Phys. Lett. B, 52 (1974), 344–346 | DOI

[11] Becchi C., Rouet A., Stora R., “Renormalization of the abelian Higgs–Kibble model”, Comm. Math. Phys., 42 (1975), 127–162 | DOI | MR

[12] Becchi C., Rouet A., Stora R., “Renormalization of gauge theories”, Ann. Physics, 98 (1976), 287–321 | DOI | MR

[13] Bering K., “Non-commutative Batalin–Vilkovisky algebras, homotopy Lie algebras and the Courant bracket”, Comm. Math. Phys., 274 (2007), 297–341, arXiv: hep-th/0603116 | DOI | MR | Zbl

[14] Bering K., Damgaard P.H., Alfaro J., “Algebra of higher antibrackets”, Nuclear Phys. B, 478 (1996), 459–503, arXiv: hep-th/9604027 | DOI | MR | Zbl

[15] Dotsenko V., Shadrin S., Vallette B., “Pre-Lie deformation theory”, Mosc. Math. J. (to appear) , arXiv: 1502.03280

[16] Ecalle J., Théorie des invariants holomorphes, Publication Mathématiques d'Orsay, , 1974 http://sites.mathdoc.fr/PMO/PDF/E_ECALLE_67_74_09.pdf

[17] Fiorenza D., Manetti M., “Formality of Koszul brackets and deformations of holomorphic Poisson manifolds”, Homology Homotopy Appl., 14 (2012), 63–75, arXiv: 1109.4309 | DOI | MR | Zbl

[18] Getzler E., “Batalin–Vilkovisky algebras and two-dimensional topological field theories”, Comm. Math. Phys., 159 (1994), 265–285, arXiv: hep-th/9212043 | DOI | MR | Zbl

[19] Hanna P.D., Sequence, , The On-line Encyclopedia of Integer Sequences, 2010 http://oeis.org/A180609

[20] Koszul J.L., “Crochet de Schouten–Nijenhuis et cohomologie”, Astérisque, 1985, 257–271 | MR | Zbl

[21] Kravchenko O., “Deformations of Batalin–Vilkovisky algebras”, Poisson Geometry (Warsaw, 1998), Banach Center Publ., 51, Polish Acad. Sci., Warsaw, 2000, 131–139, arXiv: math.QA/9903191 | MR | Zbl

[22] Lada T., Markl M., “Strongly homotopy Lie algebras”, Comm. Algebra, 23 (1995), 2147–2161, arXiv: hep-th/9406095 | DOI | MR | Zbl

[23] Lada T., Stasheff J., “Introduction to SH Lie algebras for physicists”, Internat. J. Theoret. Phys., 32 (1993), 1087–1103, arXiv: hep-th/9209099 | DOI | MR | Zbl

[24] Manetti M., “Uniqueness and intrinsic properties of non-commutative Koszul brackets”, J. Homotopy Relat. Struct. (to appear) , arXiv: 1512.05480 | DOI

[25] Markl M., “Higher braces via formal (non)commutative geometry”, Geometric Methods in Physics, Trends in Mathematics, Springer International Publishing, 2015, 67–81, arXiv: 1411.6964 | DOI | MR | Zbl

[26] Markl M., “On the origin of higher braces and higher-order derivations”, J. Homotopy Relat. Struct., 10 (2015), 637–667, arXiv: 1309.7744 | DOI | MR | Zbl

[27] Nijenhuis A., Richardson Jr. R.W., “Deformations of Lie algebra structures”, J. Math. Mech., 17 (1967), 89–105 | MR | Zbl

[28] Shadrin S., Zvonkine D., “Changes of variables in ELSV-type formulas”, Michigan Math. J., 55 (2007), 209–228, arXiv: math.AG/0602457 | DOI | MR | Zbl

[29] Sloane N.A.J., Sequences, ; , The On-line Encyclopedia of Integer Sequences, 2010 A134242A134243

[30] Tyutin I.V., Gauge invariance in field theory and statistical physics in operator formalism, arXiv: 0812.0580