@article{SIGMA_2016_12_a51,
author = {Dmitrii Karp and Elena Prilepkina},
title = {Hypergeometric {Differential} {Equation} and {New} {Identities} for the {Coefficients} of {N{\o}rlund} and {B\"uhring}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a51/}
}
TY - JOUR AU - Dmitrii Karp AU - Elena Prilepkina TI - Hypergeometric Differential Equation and New Identities for the Coefficients of Nørlund and Bühring JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a51/ LA - en ID - SIGMA_2016_12_a51 ER -
%0 Journal Article %A Dmitrii Karp %A Elena Prilepkina %T Hypergeometric Differential Equation and New Identities for the Coefficients of Nørlund and Bühring %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a51/ %G en %F SIGMA_2016_12_a51
Dmitrii Karp; Elena Prilepkina. Hypergeometric Differential Equation and New Identities for the Coefficients of Nørlund and Bühring. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a51/
[1] Akemann G., Ipsen J.R., Kieburg M., “Products of rectangular random matrices: singular values and progressive scattering”, Phys. Rev. E, 88 (2013), 052118, 13 pp., arXiv: 1307.7560 | DOI
[2] Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[3] Askey R.A., Olde Daalhuis A.B., “Generalized hypergeometric functions and Meijer $G$-function”, NIST Handbook of Mathematical Functions, Chapter 16, eds. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010, 403–418 http://dlmf.nist.gov/ | MR
[4] Beals R., Szmigielski J., “Meijer $G$-functions: a gentle introduction”, Notices Amer. Math. Soc., 60 (2013), 866–872 | DOI | MR | Zbl
[5] Beukers F., Heckman G., “Monodromy for the hypergeometric function ${}_nF_{n-1}$”, Invent. Math., 95 (1989), 325–354 | DOI | MR | Zbl
[6] Braaksma B.L.J., “Asymptotic expansions and analytic continuations for a class of Barnes-integrals”, Compositio Math., 15 (1964), 239–341 | MR
[7] Bühring W., “The behavior at unit argument of the hypergeometric function ${}_3F_2$”, SIAM J. Math. Anal., 18 (1987), 1227–1234 | DOI | MR | Zbl
[8] Bühring W., “Generalized hypergeometric functions at unit argument”, Proc. Amer. Math. Soc., 114 (1992), 145–153 | DOI | MR | Zbl
[9] Bühring W., “Transformation formulas for terminating Saalschützian hypergeometric series of unit argument”, J. Appl. Math. Stochastic Anal., 8 (1995), 189–194 | DOI | MR | Zbl
[10] Bühring W., Srivastava H.M., “Analytic continuation of the generalized hypergeometric series near unit argument with emphasis on the zero-balanced series”, Approximation Theory and Applications, Hadronic Press, Palm Harbor, FL, 1998, 17–35, arXiv: math.CA/0102032 | MR | Zbl
[11] Chamayou J.F., Letac G., “Additive properties of the Dufresne laws and their multivariate extension”, J. Theoret. Probab., 12 (1999), 1045–1066 | DOI | MR | Zbl
[12] Coelho C.A., Arnold B.C., “Instances of the product of independent beta random variables and of the Meijer $G$ and Fox $H$ functions with finite representations”, AIP Conf. Proc., 1479 (2012), 1133–1137 | DOI
[13] Consul P.C., “The exact distributions of likelihood criteria for different hypotheses”, Multivariate Analysis, II, Proc. Second Internat. Sympos. (Dayton, Ohio, 1968), ed. P.R. Krishnaian, Academic Press, New York, 1969, 171–181 | MR
[14] Davis A.W., “On the differential equation for {M}eijer's $G^{p,0}_{p,p}$ function, and further tables of Wilks's likelihood ratio criterion”, Biometrika, 66 (1979), 519–531 | DOI | MR | Zbl
[15] Dufresne D., “$G$ distributions and the beta-gamma algebra”, Electron. J. Probab., 15:71 (2010), 2163–2199 | DOI | MR | Zbl
[16] Dunkl C.F., Products of beta distributed random variables, arXiv: 1304.6671
[17] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953
[18] Feng R., Kuznetsov A., Yang F., New identies for finite sums of products of generalized hypergeometric functions, arXiv: 1512.01121
[19] Gosper R.W., Ismail M.E.H., Zhang R., “On some strange summation formulas”, Illinois J. Math., 37 (1993), 240–277 | MR | Zbl
[20] Hermite C., “Sur une identité trigonométrique”, Nouv. Ann. Mat., 4 (1885), 57–59
[21] Johnson W.P., “Trigonometric identities à la Hermite”, Amer. Math. Monthly, 117 (2010), 311–327 | DOI | MR | Zbl
[22] Kalinin V.M., “Special functions and limit properties of probability distributions, I”, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 13, 1969, 5–137 | MR | Zbl
[23] Karp D.B., Prilepkina E.G., “Completely monotonic gamma ratio and infinitely divisible $H$-function of Fox”, Comput. Methods Funct. Theory, 16 (2016), 135–153, arXiv: 1501.05388 | DOI | MR | Zbl
[24] Karp D.B., Prilepkina E.G., Some new facts around the delta neutral $H$ function of Fox, arXiv: 1511.06612
[25] Kilbas A.A., Saigo M., $H$-transforms. Theory and application, Analytical Methods and Special Functions, 9, Chapman Hall/CRC, Boca Raton, FL, 2004 | DOI | MR
[26] Marichev O.I., “On the representation of Meijer's $G$-function in the vicinity of singular unity”, Complex Analysis and Applications '81 (Varna, 1981), Publ. House Bulgar. Acad. Sci., Sofia, 1984, 383–398 | MR
[27] Marichev O.I., Kalla S.L., “Behaviour of hypergeometric function ${}_pF_{p-1}(z)$ in the vicinity of unity”, Rev. Técn. Fac. Ingr. Univ. Zulia, 7:2 (1984), 1–8 | MR | Zbl
[28] Mathai A.M., “A review of the different techniques used for deriving the exact distributions of multivariate test criteria”, Sankhyā Ser. A, 35 (1973), 39–60 | MR | Zbl
[29] Mathai A.M., “Extensions of Wilks' integral equations and distributions of test statistics”, Ann. Inst. Statist. Math., 36 (1984), 271–288 | DOI | MR | Zbl
[30] Meijer C.S., “On the $G$-function, I–VIII”, Nederl. Akad. Wetensch. Proc. Ser. A, 49 (1946), 227–237 ; 344–356 ; 457–469 ; 632–641 ; 765–772 ; 936–943 ; 1063–1072 ; 1165–1175 | MR | MR | MR | MR | MR | Zbl | MR
[31] Meijer $G$-functions, , Wolfram Functions Site http://functions.wolfram.com/HypergeometricFunctions/MeijerG/
[32] Nair U.S., “The application of the moment function in the study of distribution laws in statistics”, Biometrika, 30 (1939), 274–294 | DOI
[33] Nørlund N.E., “Hypergeometric functions”, Acta Math., 94 (1955), 289–349 | DOI | MR
[34] Nörlund N.E., “Sur les valeurs asymptotiques des nombres et des polynômes de Bernoulli”, Rend. Circ. Mat. Palermo, 10 (1961), 27–44 | DOI | MR
[35] Paris R.B., Kaminski D., Asymptotics and Mellin–Barnes integrals, Encyclopedia of Mathematics and its Applications, 85, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl
[36] Prudnikov A.P., Brychkov Y.A., Marichev O.I., Integrals and series, v. 3, More special functions, Gordon and Breach Science Publishers, New York, 1990 | MR | Zbl
[37] Saigo M., Srivastava H.M., “The behavior of the zero-balanced hypergeometric series ${}_pF_{p-1}$ near the boundary of its convergence region”, Proc. Amer. Math. Soc., 110 (1990), 71–76 | DOI | MR | Zbl
[38] Scheidegger F., Analytic continuation of hypergeometric functions in the resonant case, arXiv: 1602.01384
[39] Springer M.D., Thompson W.E., “The distribution of products of beta, gamma and Gaussian random variables”, SIAM J. Appl. Math., 18 (1970), 721–737 | DOI | MR | Zbl
[40] Tang J., Gupta A.K., “On the distribution of the product of independent beta random variables”, Statist. Probab. Lett., 2 (1984), 165–168 | DOI | MR | Zbl
[41] Tang J., Gupta A.K., “Exact distribution of certain general test statistics in multivariate analysis”, Austral. J. Statist., 28 (1986), 107–114 | DOI | MR | Zbl
[42] Thomae J., “Ueber die höheren hypergeometrischen Reihen, insbesondere über die Reihe: $1+\frac{{a_0 a_{1}a_2}}{{1.b_1b_2}}x + \frac{{a_0(a_0+1)a_1(a_1+1)a_2(a_2+1)}}{{1.2.b_1(b_1+1)b_2(b_2+1)}}x^2 + \cdots$”, Math. Ann., 2 (1870), 427–444 | DOI | MR
[43] Whittaker E.T., Watson G.N., A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[44] Wilks S.S., “Certain generalizations in the analysis of variance”, Biometrika, 24 (1932), 471–494 | DOI