@article{SIGMA_2016_12_a50,
author = {Nobutaka Nakazono},
title = {Hypergeometric $\tau$ {Functions} of the $q${-Painlev\'e} {Systems} of {Types} $A_4^{(1)}$ and $(A_1+A_1')^{(1)}$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a50/}
}
TY - JOUR
AU - Nobutaka Nakazono
TI - Hypergeometric $\tau$ Functions of the $q$-Painlevé Systems of Types $A_4^{(1)}$ and $(A_1+A_1')^{(1)}$
JO - Symmetry, integrability and geometry: methods and applications
PY - 2016
VL - 12
UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a50/
LA - en
ID - SIGMA_2016_12_a50
ER -
%0 Journal Article
%A Nobutaka Nakazono
%T Hypergeometric $\tau$ Functions of the $q$-Painlevé Systems of Types $A_4^{(1)}$ and $(A_1+A_1')^{(1)}$
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a50/
%G en
%F SIGMA_2016_12_a50
Nobutaka Nakazono. Hypergeometric $\tau$ Functions of the $q$-Painlevé Systems of Types $A_4^{(1)}$ and $(A_1+A_1')^{(1)}$. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a50/
[1] Adler V.E., Bobenko A.I., Suris Yu.B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl
[2] Adler V.E., Bobenko A.I., Suris Yu.B., “Discrete nonlinear hyperbolic equations: classification of integrable cases”, Funct. Anal. Appl., 43 (2009), 3–17, arXiv: 0705.1663 | DOI | MR | Zbl
[3] Agafonov S.I., “Discrete $z^\gamma$: embedded circle patterns with the square grid combinatorics and discrete Painlevé equations”, Theoret. and Math. Phys., 134 (2003), 3–13, arXiv: nlin.SI/0110030 | DOI | MR | Zbl
[4] Agafonov S.I., “Imbedded circle patterns with the combinatorics of the square grid and discrete Painlevé equations”, Discrete Comput. Geom., 29 (2003), 305–319 | DOI | MR | Zbl
[5] Agafonov S.I., Bobenko A.I., “Discrete $Z^\gamma$ and Painlevé equations”, Int. Math. Res. Not., 2000 (2000), 165–193, arXiv: solv-int/9909002 | DOI | MR | Zbl
[6] Agafonov S.I., Bobenko A.I., “Hexagonal circle patterns with constant intersection angles and discrete Painlevé and Riccati equations”, J. Math. Phys., 44 (2003), 3455–3469, arXiv: math.CV/0301282 | DOI | MR | Zbl
[7] Ando H., Hay M., Kajiwara K., Masuda T., “An explicit formula for the discrete power function associated with circle patterns of Schramm type”, Funkcial. Ekvac., 57 (2014), 1–41, arXiv: 1105.1612 | DOI | MR | Zbl
[8] Boll R., “Classification of 3D consistent quad-equations”, J. Nonlinear Math. Phys., 18 (2011), 337–365, arXiv: 1009.4007 | DOI | MR | Zbl
[9] Boll R., “Corrigendum: Classification of 3{D} consistent quad-equations”, J. Nonlinear Math. Phys., 19 (2012), 618–620 | MR
[10] Boll R., Classification and Lagrangian structure of 3D consistent quad-equations, Ph.D. Thesis, Technische Universität Berlin, 2012 | Zbl
[11] Brézin É., Kazakov V.A., “Exactly solvable field theories of closed strings”, Phys. Lett. B, 236 (1990), 144–150 | DOI | MR
[12] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[13] Grammaticos B., Ohta Y., Ramani A., Sakai H., “Degeneration through coalescence of the $q$-Painlevé VI equation”, J. Phys. A: Math. Gen., 31 (1998), 3545–3558 | DOI | MR | Zbl
[14] Grammaticos B., Ramani A., “Discrete Painlevé equations: a review”, Discrete Integrable Systems, Lecture Notes in Phys., 644, Springer, Berlin, 2004, 245–321 | DOI | MR | Zbl
[15] Grammaticos B., Ramani A., Papageorgiou V., Do integrable mappings have the Painlevé property?, Phys. Rev. Lett., 67 (1991), 1825–1828 | DOI | MR | Zbl
[16] Hamamoto T., Kajiwara K., “Hypergeometric solutions to the $q$-{P}ainlevé equation of type $A_4^{(1)}$”, J. Phys. A: Math. Theor., 40 (2007), 12509–12524, arXiv: nlin.SI/0701001 | DOI | MR | Zbl
[17] Hamamoto T., Kajiwara K., Witte N.S., “Hypergeometric solutions to the $q$-Painlevé equation of type $(A_1+A'_1)^{(1)}$”, Int. Math. Res. Not., 2006 (2006), 84619, 26 pp., arXiv: nlin.SI/0607065 | DOI | MR | Zbl
[18] Hay M., Kajiwara K., Masuda T., “Bilinearization and special solutions to the discrete Schwarzian KdV equation”, J. Math-for-Ind., 3A (2011), 53–62, arXiv: 1102.1829 | MR | Zbl
[19] Itzykson C., Zuber J.B., “The planar approximation. II”, J. Math. Phys., 21 (1980), 411–421 | DOI | MR | Zbl
[20] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[21] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III”, Phys. D, 4 (1981), 26–46 | DOI | MR | Zbl
[22] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[23] Joshi N., Kajiwara K., Mazzocco M., “Generating function associated with the Hankel determinant formula for the solutions of the Painlevé IV equation”, Funkcial. Ekvac., 49 (2006), 451–468, arXiv: nlin.SI/0512041 | DOI | MR | Zbl
[24] Joshi N., Nakazono N., Lax pairs of discrete Painlevé equations: $({A}_2+{A}_1)^{(1)}$ case, arXiv: 1503.04515
[25] Joshi N., Nakazono N., Shi Y., “Lattice equations arising from discrete Painlevé systems. I. $(A_2 + A_1)^{(1)}$ and $(A_1 + A_1^\prime)^{(1)}$ cases”, J. Math. Phys., 56 (2015), 092705, 25 pp., arXiv: 1401.7044 | DOI | MR | Zbl
[26] Joshi N., Nakazono N., Shi Y., Lattice equations arising from discrete Painlevé systems. II. ${A}_4^{(1)}$ case, arXiv: 1603.09414
[27] Kajiwara K., Kimura K., “On a $q$-difference Painlevé III equation. I. Derivation, symmetry and Riccati type solutions”, J. Nonlinear Math. Phys., 10 (2003), 86–102, arXiv: nlin.SI/0205019 | DOI | MR | Zbl
[28] Kajiwara K., Masuda T., “A generalization of determinant formulae for the solutions of Painlevé II and XXXIV equations”, J. Phys. A: Math. Gen., 32 (1999), 3763–3778, arXiv: solv-int/9903014 | DOI | MR | Zbl
[29] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “$_{10}E_9$ solution to the elliptic Painlevé equation”, J. Phys. A: Math. Gen., 36 (2003), L263–L272, arXiv: nlin.SI/0303032 | DOI | MR | Zbl
[30] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “Hypergeometric solutions to the $q$-Painlevé equations”, Int. Math. Res. Not., 2004 (2004), 2497–2521, arXiv: nlin.SI/0403036 | DOI | MR | Zbl
[31] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “Construction of hypergeometric solutions to the $q$-Painlevé equations”, Int. Math. Res. Not., 2005 (2005), 1439–1463, arXiv: nlin.SI/0501051 | DOI | MR | Zbl
[32] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “Point configurations, Cremona transformations and the elliptic difference {P}ainlevé equation”, Théories asymptotiques et équations de Painlevé, Sémin. Congr., 14, Soc. Math. France, Paris, 2006, 169–198, arXiv: nlin.SI/0411003 | MR | Zbl
[33] Kajiwara K., Nakazono N., “Hypergeometric solutions to the symmetric $q$-Painlevé equations”, Int. Math. Res. Not., 2015 (2015), 1101–1140, arXiv: 1304.0858 | DOI | MR | Zbl
[34] Kajiwara K., Noumi M., Yamada Y., “A study on the fourth $q$-Painlevé equation”, J. Phys. A: Math. Gen., 34 (2001), 8563–8581, arXiv: nlin.SI/0012063 | DOI | MR | Zbl
[35] Kajiwara K., Noumi M., Yamada Y., Geometric aspects of Painlevé equations, arXiv: 1509.08186
[36] Kajiwara K., Ohta Y., “Determinant structure of the rational solutions for the Painlevé IV equation”, J. Phys. A: Math. Gen., 31 (1998), 2431–2446, arXiv: solv-int/9709011 | DOI | MR | Zbl
[37] Kajiwara K., Ohta Y., Satsuma J., “Casorati determinant solutions for the discrete Painlevé III equation”, J. Math. Phys., 36 (1995), 4162–4174, arXiv: solv-int/9412004 | DOI | MR | Zbl
[38] Kajiwara K., Ohta Y., Satsuma J., Grammaticos B., Ramani A., “Casorati determinant solutions for the discrete Painlevé-II equation”, J. Phys. A: Math. Gen., 27 (1994), 915–922, arXiv: solv-int/9310002 | DOI | MR | Zbl
[39] Kruskal M.D., Tamizhmani K.M., Grammaticos B., Ramani A.,, “Asymmetric discrete Painlevé equations”, Regul. Chaotic Dyn., 5 (2000), 273–280 | DOI | MR | Zbl
[40] Masuda T., “Hypergeometric $\tau$-functions of the $q$-Painlevé system of type $E_7^{(1)}$”, SIGMA, 5 (2009), 035, 30 pp., arXiv: 0903.4102 | DOI | MR | Zbl
[41] Masuda T., “Hypergeometric $\tau$-functions of the $q$-Painlevé system of type $E^{(1)}_8$”, Ramanujan J., 24 (2011), 1–31 | DOI | MR | Zbl
[42] Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras, Cambridge Tracts in Mathematics, 135, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[43] Nakazono N., “Hypergeometric $\tau$ functions of the $q$-Painlevé systems of type $(A_2+A_1)^{(1)}$”, SIGMA, 6 (2010), 084, 16 pp., arXiv: 1008.2595 | DOI | MR | Zbl
[44] Nijhoff F.W., Ramani A., Grammaticos B., Ohta Y., “On discrete Painlevé equations associated with the lattice KdV systems and the Painlevé VI equation”, Stud. Appl. Math., 106 (2001), 261–314, arXiv: solv-int/9812011 | DOI | MR | Zbl
[45] Noumi M., Painlevé equations through symmetry, Translations of Mathematical Monographs, 223, Amer. Math. Soc., Providence, RI, 2004 | MR
[46] Ohta Y., Nakamura A., “Similarity KP equation and various different representations of its solutions”, J. Phys. Soc. Japan, 61 (1992), 4295–4313 | DOI | MR
[47] Okamoto K., “Studies on the Painlevé equations. I. Sixth Painlevé equation $P_{{\rm VI}}$”, Ann. Mat. Pura Appl., 146 (1987), 337–381 | DOI | MR | Zbl
[48] Okamoto K., “Studies on the Painlevé equations. II. Fifth Painlevé equation $P_{\rm V}$”, Japan. J. Math. (N.S.), 13 (1987), 47–76 | MR | Zbl
[49] Okamoto K., “Studies on the Painlevé equations. III. Second and fourth Painlevé equations, $P_{{\rm II}}$ and $P_{{\rm IV}}$”, Math. Ann., 275 (1986), 221–255 | DOI | MR | Zbl
[50] Okamoto K., “Studies on the Painlevé equations. IV. Third Painlevé equation $P_{{\rm III}}$”, Funkcial. Ekvac., 30 (1987), 305–332 | MR | Zbl
[51] Periwal V., Shevitz D., “Unitary-matrix models as exactly solvable string theories”, Phys. Rev. Lett., 64 (1990), 1326–1329 | DOI | MR
[52] Ramani A., Grammaticos B., “Discrete Painlevé equations: coalescences, limits and degeneracies”, Phys. A, 228 (1996), 160–171, arXiv: solv-int/9510011 | DOI | MR | Zbl
[53] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl
[54] Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K.M., “Special function solutions of the discrete Painlevé equations”, Comput. Math. Appl., 42 (2001), 603–614 | DOI | MR | Zbl
[55] Sakai H., “Casorati determinant solutions for the $q$-difference sixth Painlevé equation”, Nonlinearity, 11 (1998), 823–833 | DOI | MR | Zbl
[56] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[57] Tamizhmani K.M., Grammaticos B., Carstea A.S., Ramani A., “The $q$-discrete Painlevé IV equations and their properties”, Regul. Chaotic Dyn., 9 (2004), 13–20 | DOI | MR | Zbl
[58] Tsuda T., “Tau functions of $q$-Painlevé III and IV equations”, Lett. Math. Phys., 75 (2006), 39–47 | DOI | MR | Zbl
[59] Tsuda T., Masuda T., “$q$-Painlevé VI equation arising from $q$-UC hierarchy”, Comm. Math. Phys., 262 (2006), 595–609 | DOI | MR | Zbl