Extended Cosmologies
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We shall discuss cosmological models in extended theories of gravitation. We shall define a surface, called the model surface, in the space of observable parameters which characterises families of theories. We also show how this surface can be used to compare with observations. The model surface can potentially be used to falsify whole families of models instead reasoning on a single model basis as it is usually done by best fit arguments with observations.
Keywords: cosmology; extended theories of gravitation.
@article{SIGMA_2016_12_a5,
     author = {Salvatore Capozziello and Mariafelicia F. De Laurentis and Lorenzo Fatibene and Marco Ferraris and Simon Garruto},
     title = {Extended {Cosmologies}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a5/}
}
TY  - JOUR
AU  - Salvatore Capozziello
AU  - Mariafelicia F. De Laurentis
AU  - Lorenzo Fatibene
AU  - Marco Ferraris
AU  - Simon Garruto
TI  - Extended Cosmologies
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a5/
LA  - en
ID  - SIGMA_2016_12_a5
ER  - 
%0 Journal Article
%A Salvatore Capozziello
%A Mariafelicia F. De Laurentis
%A Lorenzo Fatibene
%A Marco Ferraris
%A Simon Garruto
%T Extended Cosmologies
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a5/
%G en
%F SIGMA_2016_12_a5
Salvatore Capozziello; Mariafelicia F. De Laurentis; Lorenzo Fatibene; Marco Ferraris; Simon Garruto. Extended Cosmologies. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a5/

[1] Allemandi G., Borowiec A., Francaviglia M., “Accelerated cosmological models in first-order nonlinear gravity”, Phys. Rev. D, 70 (2004), 043524, 11 pp., arXiv: hep-th/0403264 | DOI | MR

[2] Allemandi G., Borowiec A., Francaviglia M., “Accelerated cosmological models in Ricci squared gravity”, Phys. Rev. D, 70 (2004), 103503, 13 pp., arXiv: hep-th/0407090 | DOI | MR

[3] Barausse E., Sotiriou T. P., Miller J. C., “A no-go theorem for polytropic spheres in Palatini $f({\mathcal R})$ gravity”, Classical Quantum Gravity, 25 (2008), 062001, 7 pp., arXiv: gr-qc/0703132 | DOI | MR | Zbl

[4] Barreto A. B., Almeida T. S., Romero C., “Extending the ADM formalism to Weyl geometry”, AIP Conf. Proc., 1647 (2015), 89–93, arXiv: 1503.08455 | DOI

[5] Benenti S., Rational cosmology, in preparation

[6] Bojowald M., “Loop quantum cosmology”, Living Rev. Relativ., 11 (2008), 4, 131 pp., arXiv: gr-qc/0601085 | DOI | Zbl

[7] Borowiec A., Kamionka M., Kurek A., Szydlowski M., “Cosmic acceleration from modified gravity with Palatini formalism”, J. Cosmol. Astropart. Phys., 2012:2 (2012), 027, 32 pp., arXiv: 1109.3420 | DOI | MR

[8] Buchdahl H. A., “Quadratic Lagrangians and Palatini's device”, J. Phys. A: Math. Gen., 12 (1979), 1229–1234 | DOI | MR | Zbl

[9] Capozziello S., “Curvature quintessence”, Internat. J. Modern Phys. D, 11 (2002), 483–491, arXiv: gr-qc/0201033 | DOI | MR | Zbl

[10] Capozziello S., De Laurentis M., “Extended theories of gravity”, Phys. Rep., 509 (2011), 167–320, arXiv: 1108.6266 | DOI | MR

[11] Capozziello S., Francaviglia M., “Extended theories of gravity and their cosmological and astrophysical applications”, Gen. Relativity Gravitation, 40 (2008), 357–420, arXiv: 0706.1146 | DOI | MR | Zbl

[12] De Felice A., Tsujikawa S., “$f({\mathcal R})$ theories”, Living Rev. Relativ., 13 (2010), 3, 161 pp., arXiv: 1002.4928 | DOI | Zbl

[13] Di Mauro M., Fatibene L., Ferraris M., Francaviglia M., “Further extended theories of gravitation: Part I”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 887–898, arXiv: 0911.2841 | DOI | MR | Zbl

[14] Ehlers J., Pirani F. A. E., Schild A., “The geometry of free fall and light propagation”, General Relativity, Papers in Honour of J. L. Synge, Clarendon Press, Oxford, 1972, 63–84 | MR

[15] Faraoni V., $f({\mathcal R})$ gravity: successes and challenges, arXiv: 0810.2602

[16] Fatibene L., Ferraris M., Francaviglia M., Mercadante S., “Further extended theories of gravitation: Part II”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 899–906, arXiv: 0911.2842 | DOI | MR | Zbl

[17] Fatibene L., Garruto S., Polistina M., “Breaking the conformal gauge by fixing time protocols”, Int. J. Geom. Methods Mod. Phys., 12 (2015), 1550044, 14 pp., arXiv: 1410.1284 | DOI | MR | Zbl

[18] Fatibene L., Francaviglia M., “From the Ehlers–Pirani–Schild analysis on the foundations of gravitational theories to extended theories of gravity and dark matter”, PoS(CORFU2011), PoS Proc. Sci., 2011, 054, 16 pp.

[19] Fatibene L., Francaviglia M., “Mathematical equivalence versus physical equivalence between extended theories of gravitations”, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1450008, 21 pp., arXiv: 1302.2938 | DOI | MR | Zbl

[20] Mana A., Fatibene L., Ferraris M., “A further study on Palatini $f({\mathcal R})$-theories for polytropic stars”, J. Cosmol. Astropart. Phys., 2015:10 (2015), 040, 19 pp., arXiv: 1505.06575 | DOI

[21] Olmo G. J., “Hydrogen atom in Palatini theories of gravity”, Phys. Rev. D, 77 (2008), 084021, 8 pp., arXiv: 0802.4038 | DOI | MR

[22] Olmo G. J., Singh P., “Covariant effective action for loop quantum cosmology à la Palatini”, J. Cosmol. Astropart. Phys., 2009:1 (2009), 030, 10 pp., arXiv: 0806.2783 | DOI

[23] Perlick V., “Characterization of standard clocks by means of light rays and freely falling particles”, Gen. Relativity Gravitation, 19 (1987), 1059–1073 | DOI | MR | Zbl

[24] Poulis F. P., Salim J. M., “Weyl geometry and gauge-invariant gravitation”, Internat. J. Modern Phys. D, 23 (2014), 1450091, 24 pp., arXiv: 1305.6830 | DOI | MR | Zbl

[25] Querella L., Variational principles and cosmological models in higher-order gravity, Ph.D. thesis, Université de Liegè, 1998, arXiv: gr-qc/9902044 | MR

[26] Romero C., Fonseca-Neto J. B., Pucheu M. L., “General relativity and Weyl geometry”, Classical Quantum Gravity, 29 (2012), 155015, 18 pp., arXiv: 1201.1469 | DOI | MR | Zbl

[27] Salim J. M., Sautú S. L., “Gravitational theory in Weyl integrable spacetime”, Classical Quantum Gravity, 13 (1996), 353–360 | DOI | MR | Zbl

[28] Weyl H., “Gravitation und Elektrizität”, Monatsbericht Kön.-Preuss. Akad. Wiss. Berlin, 1918, 465–480 | Zbl