@article{SIGMA_2016_12_a5,
author = {Salvatore Capozziello and Mariafelicia F. De Laurentis and Lorenzo Fatibene and Marco Ferraris and Simon Garruto},
title = {Extended {Cosmologies}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a5/}
}
TY - JOUR AU - Salvatore Capozziello AU - Mariafelicia F. De Laurentis AU - Lorenzo Fatibene AU - Marco Ferraris AU - Simon Garruto TI - Extended Cosmologies JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a5/ LA - en ID - SIGMA_2016_12_a5 ER -
%0 Journal Article %A Salvatore Capozziello %A Mariafelicia F. De Laurentis %A Lorenzo Fatibene %A Marco Ferraris %A Simon Garruto %T Extended Cosmologies %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a5/ %G en %F SIGMA_2016_12_a5
Salvatore Capozziello; Mariafelicia F. De Laurentis; Lorenzo Fatibene; Marco Ferraris; Simon Garruto. Extended Cosmologies. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a5/
[1] Allemandi G., Borowiec A., Francaviglia M., “Accelerated cosmological models in first-order nonlinear gravity”, Phys. Rev. D, 70 (2004), 043524, 11 pp., arXiv: hep-th/0403264 | DOI | MR
[2] Allemandi G., Borowiec A., Francaviglia M., “Accelerated cosmological models in Ricci squared gravity”, Phys. Rev. D, 70 (2004), 103503, 13 pp., arXiv: hep-th/0407090 | DOI | MR
[3] Barausse E., Sotiriou T. P., Miller J. C., “A no-go theorem for polytropic spheres in Palatini $f({\mathcal R})$ gravity”, Classical Quantum Gravity, 25 (2008), 062001, 7 pp., arXiv: gr-qc/0703132 | DOI | MR | Zbl
[4] Barreto A. B., Almeida T. S., Romero C., “Extending the ADM formalism to Weyl geometry”, AIP Conf. Proc., 1647 (2015), 89–93, arXiv: 1503.08455 | DOI
[5] Benenti S., Rational cosmology, in preparation
[6] Bojowald M., “Loop quantum cosmology”, Living Rev. Relativ., 11 (2008), 4, 131 pp., arXiv: gr-qc/0601085 | DOI | Zbl
[7] Borowiec A., Kamionka M., Kurek A., Szydlowski M., “Cosmic acceleration from modified gravity with Palatini formalism”, J. Cosmol. Astropart. Phys., 2012:2 (2012), 027, 32 pp., arXiv: 1109.3420 | DOI | MR
[8] Buchdahl H. A., “Quadratic Lagrangians and Palatini's device”, J. Phys. A: Math. Gen., 12 (1979), 1229–1234 | DOI | MR | Zbl
[9] Capozziello S., “Curvature quintessence”, Internat. J. Modern Phys. D, 11 (2002), 483–491, arXiv: gr-qc/0201033 | DOI | MR | Zbl
[10] Capozziello S., De Laurentis M., “Extended theories of gravity”, Phys. Rep., 509 (2011), 167–320, arXiv: 1108.6266 | DOI | MR
[11] Capozziello S., Francaviglia M., “Extended theories of gravity and their cosmological and astrophysical applications”, Gen. Relativity Gravitation, 40 (2008), 357–420, arXiv: 0706.1146 | DOI | MR | Zbl
[12] De Felice A., Tsujikawa S., “$f({\mathcal R})$ theories”, Living Rev. Relativ., 13 (2010), 3, 161 pp., arXiv: 1002.4928 | DOI | Zbl
[13] Di Mauro M., Fatibene L., Ferraris M., Francaviglia M., “Further extended theories of gravitation: Part I”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 887–898, arXiv: 0911.2841 | DOI | MR | Zbl
[14] Ehlers J., Pirani F. A. E., Schild A., “The geometry of free fall and light propagation”, General Relativity, Papers in Honour of J. L. Synge, Clarendon Press, Oxford, 1972, 63–84 | MR
[15] Faraoni V., $f({\mathcal R})$ gravity: successes and challenges, arXiv: 0810.2602
[16] Fatibene L., Ferraris M., Francaviglia M., Mercadante S., “Further extended theories of gravitation: Part II”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 899–906, arXiv: 0911.2842 | DOI | MR | Zbl
[17] Fatibene L., Garruto S., Polistina M., “Breaking the conformal gauge by fixing time protocols”, Int. J. Geom. Methods Mod. Phys., 12 (2015), 1550044, 14 pp., arXiv: 1410.1284 | DOI | MR | Zbl
[18] Fatibene L., Francaviglia M., “From the Ehlers–Pirani–Schild analysis on the foundations of gravitational theories to extended theories of gravity and dark matter”, PoS(CORFU2011), PoS Proc. Sci., 2011, 054, 16 pp.
[19] Fatibene L., Francaviglia M., “Mathematical equivalence versus physical equivalence between extended theories of gravitations”, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1450008, 21 pp., arXiv: 1302.2938 | DOI | MR | Zbl
[20] Mana A., Fatibene L., Ferraris M., “A further study on Palatini $f({\mathcal R})$-theories for polytropic stars”, J. Cosmol. Astropart. Phys., 2015:10 (2015), 040, 19 pp., arXiv: 1505.06575 | DOI
[21] Olmo G. J., “Hydrogen atom in Palatini theories of gravity”, Phys. Rev. D, 77 (2008), 084021, 8 pp., arXiv: 0802.4038 | DOI | MR
[22] Olmo G. J., Singh P., “Covariant effective action for loop quantum cosmology à la Palatini”, J. Cosmol. Astropart. Phys., 2009:1 (2009), 030, 10 pp., arXiv: 0806.2783 | DOI
[23] Perlick V., “Characterization of standard clocks by means of light rays and freely falling particles”, Gen. Relativity Gravitation, 19 (1987), 1059–1073 | DOI | MR | Zbl
[24] Poulis F. P., Salim J. M., “Weyl geometry and gauge-invariant gravitation”, Internat. J. Modern Phys. D, 23 (2014), 1450091, 24 pp., arXiv: 1305.6830 | DOI | MR | Zbl
[25] Querella L., Variational principles and cosmological models in higher-order gravity, Ph.D. thesis, Université de Liegè, 1998, arXiv: gr-qc/9902044 | MR
[26] Romero C., Fonseca-Neto J. B., Pucheu M. L., “General relativity and Weyl geometry”, Classical Quantum Gravity, 29 (2012), 155015, 18 pp., arXiv: 1201.1469 | DOI | MR | Zbl
[27] Salim J. M., Sautú S. L., “Gravitational theory in Weyl integrable spacetime”, Classical Quantum Gravity, 13 (1996), 353–360 | DOI | MR | Zbl
[28] Weyl H., “Gravitation und Elektrizität”, Monatsbericht Kön.-Preuss. Akad. Wiss. Berlin, 1918, 465–480 | Zbl