@article{SIGMA_2016_12_a48,
author = {Erik A. van Doorn},
title = {Shell {Polynomials} and {Dual} {Birth-Death} {Processes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a48/}
}
Erik A. van Doorn. Shell Polynomials and Dual Birth-Death Processes. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a48/
[1] Anderson W.J., Continuous-time Markov chains. An applications-oriented approach, Springer Series in Statistics: Probability and its Applications, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[2] Berg C., Christensen J.P.R., “Density questions in the classical theory of moments”, Ann. Inst. Fourier (Grenoble), 31 (1981), 99–114 | DOI | MR | Zbl
[3] Berg C., Christiansen J.S., “A question by T.S. Chihara about shell polynomials and indeterminate moment problems”, J. Approx. Theory, 163 (2011), 1449–1464, arXiv: arXiv:1102.2723 | DOI | MR | Zbl
[4] Berg C., Thill M., “A density index for the Stieltjes moment problem”, Orthogonal Polynomials and their Applications (Erice, 1990), IMACS Ann. Comput. Appl. Math., 9, Baltzer, Basel, 1991, 185–188 | MR | Zbl
[5] Berg C., Thill M., “Rotation invariant moment problems”, Acta Math., 167 (1991), 207–227 | DOI | MR | Zbl
[6] Berg C., Valent G., “The Nevanlinna parametrization for some indeterminate Stieltjes moment problems associated with birth and death processes”, Methods Appl. Anal., 1 (1994), 169–209 | DOI | MR | Zbl
[7] Berg C., Valent G., “Nevanlinna extremal measures for some orthogonal polynomials related to birth and death processes”, J. Comput. Appl. Math., 57 (1995), 29–43 | DOI | MR | Zbl
[8] Chihara T.S., “Chain sequences and orthogonal polynomials”, Trans. Amer. Math. Soc., 104 (1962), 1–16 | DOI | MR | Zbl
[9] Chihara T.S., “On determinate Hamburger moment problems”, Pacific J. Math., 27 (1968), 475–484 | DOI | MR | Zbl
[10] Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl
[11] Chihara T.S., “Indeterminate symmetric moment problems”, J. Math. Anal. Appl., 85 (1982), 331–346 | DOI | MR | Zbl
[12] Chihara T.S., “The parameters of a chain sequence”, Proc. Amer. Math. Soc., 108 (1990), 775–780 | DOI | MR | Zbl
[13] Chihara T.S., “Shell polynomials and indeterminate moment problems”, J. Comput. Appl. Math., 133 (2001), 680–681 | DOI
[14] Coolen-Schrijner P., van Doorn E.A., “Orthogonal polynomials on ${\mathbb R}^+$ and birth-death processes with killing”, Difference Equations, Special Functions and Orthogonal Polynomials, eds. S. Elaydi, J. Cushing, R. Lasser, A. Ruffing, V. Papageorgiou, W. Van Assche, World Sci. Publ., Hackensack, NJ, 2007, 726–740 | DOI | MR | Zbl
[15] Fralix B., When are two Markov chains similar?, Statist. Probab. Lett., 107 (2015), 199–203 | DOI | MR | Zbl
[16] Karlin S., McGregor J.L., “The differential equations of birth-and-death processes, and the Stieltjes moment problem”, Trans. Amer. Math. Soc., 85 (1957), 489–546 | DOI | MR | Zbl
[17] Karlin S., McGregor J., “The classification of birth and death processes”, Trans. Amer. Math. Soc., 86 (1957), 366–400 | DOI | MR | Zbl
[18] Lenin R.B., Parthasarathy P.R., Scheinhardt W.R.W., van Doorn E.A., “Families of birth-death processes with similar time-dependent behaviour”, J. Appl. Probab., 37 (2000), 835–849 | DOI | MR | Zbl
[19] Pedersen H.L., “Stieltjes moment problems and the Friedrichs extension of a positive definite operator”, J. Approx. Theory, 83 (1995), 289–307 | DOI | MR | Zbl
[20] Pollett P.K., “Similar Markov chains”, J. Appl. Probab., 38A (2001), 53–65 | DOI | MR | Zbl
[21] Shohat J.A., Tamarkin J.D., The problem of moments, Math. Surveys Monogr., 1, Amer. Math. Soc., New York, 1943 | DOI | MR
[22] van Doorn E.A., “The indeterminate rate problem for birth-death processes”, Pacific J. Math., 130 (1987), 379–393 | DOI | MR | Zbl
[23] van Doorn E.A., “Representations for the decay parameter of a birth-death process based on the Courant–Fischer theorem”, J. Appl. Probab., 52 (2015), 278–289 | DOI | MR | Zbl
[24] van Doorn E.A., “Spectral properties of birth-death polynomials”, J. Comput. Appl. Math., 284 (2015), 251–258 | DOI | MR | Zbl