@article{SIGMA_2016_12_a47,
author = {Luc Vinet and Alexei Zhedanov},
title = {Hypergeometric {Orthogonal} {Polynomials} with respect to {Newtonian} {Bases}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a47/}
}
Luc Vinet; Alexei Zhedanov. Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a47/
[1] Bannai E., Ito T., Algebraic combinatorics, v. I, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984, association schemes | MR | Zbl
[2] Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl
[3] Durán A.J., “Orthogonal polynomials satisfying higher-order difference equations”, Constr. Approx., 36 (2012), 459–486 | DOI | MR | Zbl
[4] Everitt W.N., Kwon K.H., Littlejohn L.L., Wellman R., “Orthogonal polynomial solutions of linear ordinary differential equations”, J. Comput. Appl. Math., 133 (2001), 85–109 | DOI | MR | Zbl
[5] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[6] Geronimus J., “The orthogonality of some systems of polynomials”, Duke Math. J., 14 (1947), 503–510 | DOI | MR | Zbl
[7] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[8] Leonard D.A., “Orthogonal polynomials, duality and association schemes”, SIAM J. Math. Anal., 13 (1982), 656–663 | DOI | MR | Zbl
[9] Okounkov A., “On Newton interpolation of symmetric functions: a characterization of interpolation Macdonald polynomials”, Adv. in Appl. Math., 20 (1998), 395–428 | DOI | MR | Zbl
[10] Rains E.M., “$\mathrm{BC}_n$-symmetric polynomials”, Transform. Groups, 10 (2005), 63–132, arXiv: math.QA/0112035 | DOI | MR | Zbl
[11] Roman S., “The theory of the umbral calculus, I”, J. Math. Anal. Appl., 87 (1982), 58–115 | DOI | MR | Zbl
[12] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other”, Linear Algebra Appl., 330 (2001), 149–203, arXiv: math.RA/0406555 | DOI | MR | Zbl
[13] Terwilliger P., “Leonard pairs from 24 points of view”, Rocky Mountain J. Math., 32 (2002), 827–888, arXiv: math.RA/0406577 | DOI | MR | Zbl
[14] Terwilliger P., “Leonard pairs and the $q$-Racah polynomials”, Linear Algebra Appl., 387 (2004), 235–276, arXiv: math.QA/0306301 | DOI | MR | Zbl
[15] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD-D canonical form and the LB-UB canonical form”, J. Algebra, 291 (2005), 1–45, arXiv: math.RA/0304077 | DOI | MR | Zbl
[16] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other: comments on the split decomposition”, J. Comput. Appl. Math., 178 (2005), 437–452, arXiv: math.RA/0306290 | DOI | MR | Zbl
[17] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array”, Des. Codes Cryptogr., 34 (2005), 307–332, arXiv: math.RA/0306291 | DOI | MR | Zbl
[18] Tsujimoto S., Vinet L., Zhedanov A., “Dunkl shift operators and Bannai–Ito polynomials”, Adv. Math., 229 (2012), 2123–2158, arXiv: 1106.3512 | DOI | MR | Zbl
[19] Vinet L., Zhedanov A., “A ‘missing’ family of classical orthogonal polynomials”, J. Phys. A: Math. Theor., 44 (2011), 085201, 16 pp., arXiv: 1011.1669 | DOI | MR | Zbl
[20] Zhedanov A., Abstract “hypergeometric” orthogonal polynomials, arXiv: 1401.6754