Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of “hypergeometric” polynomials with respect to Newtonian bases. These polynomials are eigenfunctions ($L P_n(x) = \lambda_n P_n(x)$) of some abstract operator $L$ which is 2-diagonal in the Newtonian basis $\varphi_n(x)$: $L \varphi_n(x) = \lambda_n \varphi_n(x) + \tau_n(x) \varphi_{n-1}(x)$ with some coefficients $\lambda_n$, $\tau_n$. We find the necessary and sufficient conditions for the polynomials $P_n(x)$ to be orthogonal. For the special cases where the sets $\lambda_n$ correspond to the classical grids, we find the complete solution to these conditions and observe that it leads to the most general Askey–Wilson polynomials and their special and degenerate classes.
Keywords: abstract hypergeometric operator; orthogonal polynomials; classical orthogonal polynomials.
@article{SIGMA_2016_12_a47,
     author = {Luc Vinet and Alexei Zhedanov},
     title = {Hypergeometric {Orthogonal} {Polynomials} with respect to {Newtonian} {Bases}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a47/}
}
TY  - JOUR
AU  - Luc Vinet
AU  - Alexei Zhedanov
TI  - Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a47/
LA  - en
ID  - SIGMA_2016_12_a47
ER  - 
%0 Journal Article
%A Luc Vinet
%A Alexei Zhedanov
%T Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a47/
%G en
%F SIGMA_2016_12_a47
Luc Vinet; Alexei Zhedanov. Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a47/

[1] Bannai E., Ito T., Algebraic combinatorics, v. I, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984, association schemes | MR | Zbl

[2] Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl

[3] Durán A.J., “Orthogonal polynomials satisfying higher-order difference equations”, Constr. Approx., 36 (2012), 459–486 | DOI | MR | Zbl

[4] Everitt W.N., Kwon K.H., Littlejohn L.L., Wellman R., “Orthogonal polynomial solutions of linear ordinary differential equations”, J. Comput. Appl. Math., 133 (2001), 85–109 | DOI | MR | Zbl

[5] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[6] Geronimus J., “The orthogonality of some systems of polynomials”, Duke Math. J., 14 (1947), 503–510 | DOI | MR | Zbl

[7] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[8] Leonard D.A., “Orthogonal polynomials, duality and association schemes”, SIAM J. Math. Anal., 13 (1982), 656–663 | DOI | MR | Zbl

[9] Okounkov A., “On Newton interpolation of symmetric functions: a characterization of interpolation Macdonald polynomials”, Adv. in Appl. Math., 20 (1998), 395–428 | DOI | MR | Zbl

[10] Rains E.M., “$\mathrm{BC}_n$-symmetric polynomials”, Transform. Groups, 10 (2005), 63–132, arXiv: math.QA/0112035 | DOI | MR | Zbl

[11] Roman S., “The theory of the umbral calculus, I”, J. Math. Anal. Appl., 87 (1982), 58–115 | DOI | MR | Zbl

[12] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other”, Linear Algebra Appl., 330 (2001), 149–203, arXiv: math.RA/0406555 | DOI | MR | Zbl

[13] Terwilliger P., “Leonard pairs from 24 points of view”, Rocky Mountain J. Math., 32 (2002), 827–888, arXiv: math.RA/0406577 | DOI | MR | Zbl

[14] Terwilliger P., “Leonard pairs and the $q$-Racah polynomials”, Linear Algebra Appl., 387 (2004), 235–276, arXiv: math.QA/0306301 | DOI | MR | Zbl

[15] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD-D canonical form and the LB-UB canonical form”, J. Algebra, 291 (2005), 1–45, arXiv: math.RA/0304077 | DOI | MR | Zbl

[16] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other: comments on the split decomposition”, J. Comput. Appl. Math., 178 (2005), 437–452, arXiv: math.RA/0306290 | DOI | MR | Zbl

[17] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array”, Des. Codes Cryptogr., 34 (2005), 307–332, arXiv: math.RA/0306291 | DOI | MR | Zbl

[18] Tsujimoto S., Vinet L., Zhedanov A., “Dunkl shift operators and Bannai–Ito polynomials”, Adv. Math., 229 (2012), 2123–2158, arXiv: 1106.3512 | DOI | MR | Zbl

[19] Vinet L., Zhedanov A., “A ‘missing’ family of classical orthogonal polynomials”, J. Phys. A: Math. Theor., 44 (2011), 085201, 16 pp., arXiv: 1011.1669 | DOI | MR | Zbl

[20] Zhedanov A., Abstract “hypergeometric” orthogonal polynomials, arXiv: 1401.6754