@article{SIGMA_2016_12_a46,
author = {Alexandre M. Gavrilik and Ivan I. Kachurik},
title = {Nonstandard {Deformed} {Oscillators} from $q$- and $p,q${-Deformations} of {Heisenberg} {Algebra}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a46/}
}
TY - JOUR AU - Alexandre M. Gavrilik AU - Ivan I. Kachurik TI - Nonstandard Deformed Oscillators from $q$- and $p,q$-Deformations of Heisenberg Algebra JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a46/ LA - en ID - SIGMA_2016_12_a46 ER -
%0 Journal Article %A Alexandre M. Gavrilik %A Ivan I. Kachurik %T Nonstandard Deformed Oscillators from $q$- and $p,q$-Deformations of Heisenberg Algebra %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a46/ %G en %F SIGMA_2016_12_a46
Alexandre M. Gavrilik; Ivan I. Kachurik. Nonstandard Deformed Oscillators from $q$- and $p,q$-Deformations of Heisenberg Algebra. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a46/
[1] Adamska L.V., Gavrilik A.M., “Multi-particle correlations in $qp$-Bose gas model”, J. Phys. A: Math. Gen., 37 (2004), 4787–4795, arXiv: hep-ph/0312390 | DOI | MR | Zbl
[2] Algin A., “Bose–Einstein condensation in a gas of Fibonacci oscillators”, J. Stat. Mech. Theory Exp., 2008 (2008), P1009, 23 pp., arXiv: 0810.1827 | DOI | MR
[3] Arik M., Coon D.D., “Hilbert spaces of analytic functions and generalized coherent states”, J. Math. Phys., 17 (1976), 524–527 | DOI | MR
[4] Arik M., Demircan E., Turgut T., Ekinci L., Mungan M., “Fibonacci oscillators”, Z. Phys. C, 55 (1992), 89–95 | DOI | MR
[5] Bagchi B., Fring A., “Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems”, Phys. Lett. A, 373 (2009), 4307–4310, arXiv: 0907.5354 | DOI | MR | Zbl
[6] Biedenharn L.C., “The quantum group ${\rm SU}_q(2)$ and a $q$-analogue of the boson operators”, J. Phys. A: Math. Gen., 22 (1989), L873–L878 | DOI | MR | Zbl
[7] Brodimas G., Jannussis A., Mignani R., “Bose realization of a noncanonical Heisenberg algebra”, J. Phys. A: Math. Gen., 25 (1992), L329–L334 http://stacks.iop.org/0305-4470/25/L329 | DOI | MR | Zbl
[8] Calisto H., Leiva C., “Generalized commutation relations and nonlinear momenta theories: a close relationship”, Internat. J. Modern Phys. D, 16 (2007), 927–940, arXiv: hep-th/0509227 | DOI | MR | Zbl
[9] Chakrabarti A., Jagannathan R., “A $(p,q)$-oscillator realization of two-parameter quantum algebras”, J. Phys. A: Math. Gen., 24 (1991), L711–L718 | DOI | Zbl
[10] Chaturvedi S., Srinivasan V., Jagannathan R., “Tamm–Dancoff deformation of bosonic oscillator algebras”, Modern Phys. Lett. A, 8 (1993), 3727–3734 | DOI | MR | Zbl
[11] Chung W.S., Gavrilik A.M., Kachurik I.I., Rebesh A.P., “The symmetric Tamm–Dancoff $q$-oscillator: the representation, quasi-Fibonacci nature, accidental degeneracy and coherent states”, J. Phys. A: Math. Theor., 47 (2014), 305304, 14 pp., arXiv: 1402.7241 | DOI | MR | Zbl
[12] Chung W.S., Klimyk A.U., “On position and momentum operators in the $q$-oscillator algebra”, J. Math. Phys., 37 (1996), 917–932 | DOI | MR | Zbl
[13] Dorsch G.C., Nogueira J.A., “Maximally localized states in quantum mechanics with a modified commutation relation to all orders”, Internat. J. Modern Phys. A, 27 (2012), 1250113, 18 pp., arXiv: 1106.2737 | DOI | MR | Zbl
[14] Garay L.J., “Quantum gravity and minimum length”, Internat. J. Modern Phys. A, 10 (1995), 145–166, arXiv: gr-qc/9403008 | DOI
[15] Gavrilik A.M., “Combined analysis of two- and three-particle correlations in $q,p$-Bose gas model”, SIGMA, 2 (2006), 074, 12 pp., arXiv: hep-ph/0512357 | DOI | MR | Zbl
[16] Gavrilik A.M., Kachurik I.I., “Three-parameter (two-sided) deformation of Heisenberg algebra”, Modern Phys. Lett. A, 27 (2012), 1250114, 12 pp., arXiv: 1204.2817 | DOI | MR | Zbl
[17] Gavrilik A.M., Kachurik I.I., “New version of pseudo-hermiticity in the two-sided deformation of Heisenberg algebra”, Modern Phys. Lett. A, 31 (2016), 1650024, 15 pp., arXiv: 1503.04143 | DOI | MR | Zbl
[18] Gavrilik A.M., Kachurik I.I., Rebesh A.P., “Quasi-Fibonacci oscillators”, J. Phys. A: Math. Theor., 43 (2010), 245204, 16 pp., arXiv: 1002.0601 | DOI | MR | Zbl
[19] Gavrilik A.M., Mishchenko Yu.A., “Deformed Bose gas models aimed at taking into account both compositeness of particles and their interaction”, Ukr. J. Phys., 58 (2013), 1171–1177, arXiv: 1312.1573 | DOI
[20] Gavrilik A.M., Mishchenko Yu.A., “Correlation function intercepts for $\tilde\mu,q$-deformed Bose gas model implying effective accounting for interaction and compositeness of particles”, Nuclear Phys. B, 891 (2015), 466–481, arXiv: 1411.5955 | DOI | MR | Zbl
[21] Gavrilik A.M., Rebesh A.P., “A $q$-oscillator with “accidental” degeneracy of energy levels”, Modern Phys. Lett. A, 22 (2007), 949–960, arXiv: quant-ph/0612122 | DOI | MR | Zbl
[22] Gavrilik A.M., Rebesh A.P., “Deformed oscillators with two double (pairwise) degeneracies of energy levels”, SIGMA, 3 (2007), 112, 11 pp., arXiv: 0710.0841 | DOI | MR | Zbl
[23] Gavrilik A.M., Rebesh A.P., “Occurrence of pairwise energy level degeneracies in $q,p$-oscillator model”, Ukr. J. Phys., 53 (2008), 586–594, arXiv: 0805.4173 | MR
[24] Gavrilik A.M., Rebesh A.P., “Plethora of $q$-oscillators possessing pairwise energy level degeneracy”, Modern Phys. Lett. A, 23 (2008), 921–932, arXiv: 1306.6573 | DOI | MR | Zbl
[25] Gavrilik A.M., Rebesh A.P., “Intercepts of the momentum correlation functions in $\mu$-Bose gas model and their asymptotics”, Eur. Phys. J. A, 47 (2011), 55, 8 pp., arXiv: 1007.5187 | DOI
[26] Gavrilik A.M., Rebesh A.P., “Deformed gas of $p,q$-bosons: virial expansion and virial coefficients”, Modern Phys. Lett. B, 26 (2012), 1150030, 13 pp., arXiv: 1111.7216 | DOI | MR | Zbl
[27] Hossenfelder S., “A note on theories with a minimal length”, Classical Quantum Gravity, 23 (2006), 1815–1821, arXiv: hep-th/0510245 | DOI | MR | Zbl
[28] Jannussis A., “New deformed Heisenberg oscillator”, J. Phys. A: Math. Gen., 26 (1993), L233–L237 | DOI | MR | Zbl
[29] Kempf A., “Uncertainty relation in quantum mechanics with quantum group symmetry”, J. Math. Phys., 35 (1994), 4483–4496, arXiv: hep-th/9311147 | DOI | MR | Zbl
[30] Liu Y.-X., Sun C.P., Yu S.X., Zhou D.L., “Semiconductor-cavity QED in high-$Q$ regimes with $q$-deformed bosons”, Phys. Rev. A, 63 (2001), 023802, 5 pp. | DOI
[31] Macfarlane A.J., “On $q$-analogues of the quantum harmonic oscillator and the quantum group ${\rm SU}(2)_q$”, J. Phys. A: Math. Gen., 22 (1989), 4581–4588 | DOI | MR | Zbl
[32] Masłowski T., Nowicki A., Tkachuk V.M., “Deformed Heisenberg algebra and minimal length”, J. Phys. A: Math. Theor., 45 (2012), 075309, 5 pp., arXiv: 1201.5545 | DOI | MR | Zbl
[33] Meljanac S., Mileković M., Pallua S., “Unified view of deformed single-mode oscillator algebras”, Phys. Lett. B, 328 (1994), 55–59, arXiv: hep-th/9404039 | DOI | MR
[34] Plyushchay M.S., “Deformed Heisenberg algebra, fractional spin fields, and supersymmetry without fermions”, Ann. Physics, 245 (1996), 339–360, arXiv: hep-th/9601116 | DOI | MR | Zbl
[35] Plyushchay M.S., “Deformed Heisenberg algebra with reflection”, Nuclear Phys. B, 491 (1997), 619–634, arXiv: hep-th/9701091 | DOI | MR | Zbl
[36] Rovenchak A., “Complex-valued fractional statistics for $D$-dimensional harmonic oscillators”, Phys. Lett. A, 378 (2014), 100–108 | DOI | MR
[37] Saavedra I., Utreras C., “A generalization of quantum mechanics for high energies and quark physics”, Phys. Lett. B, 98 (1981), 74–76 | DOI
[38] Schwenk J., Wess J., “A $q$-deformed quantum mechanical toy model”, Phys. Lett. B, 291 (1992), 273–277 | DOI | MR