The Asymptotic Expansion of Kummer Functions for Large Values of the $a$-Parameter, and Remarks on a Paper by Olver
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that a known asymptotic expansion of the Kummer function $U(a,b,z)$ as $a$ tends to infinity is valid for $z$ on the full Riemann surface of the logarithm. A corresponding result is also proved in a more general setting considered by Olver (1956).
Keywords: Kummer functions; asymptotic expansions.
@article{SIGMA_2016_12_a45,
     author = {Hans Volkmer},
     title = {The {Asymptotic} {Expansion} of {Kummer} {Functions} for {Large} {Values} of the $a${-Parameter,} and {Remarks} on a {Paper} by {Olver}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a45/}
}
TY  - JOUR
AU  - Hans Volkmer
TI  - The Asymptotic Expansion of Kummer Functions for Large Values of the $a$-Parameter, and Remarks on a Paper by Olver
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a45/
LA  - en
ID  - SIGMA_2016_12_a45
ER  - 
%0 Journal Article
%A Hans Volkmer
%T The Asymptotic Expansion of Kummer Functions for Large Values of the $a$-Parameter, and Remarks on a Paper by Olver
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a45/
%G en
%F SIGMA_2016_12_a45
Hans Volkmer. The Asymptotic Expansion of Kummer Functions for Large Values of the $a$-Parameter, and Remarks on a Paper by Olver. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a45/

[1] Cohl H.S., Hirtenstein J., Volkmer H., Convergence of Magnus integral addition theorems for confluent hypergeometric functions, arXiv: 1601.02566

[2] Magnus W., “Zur Theorie des zylindrisch-parabolischen Spiegels”, Z. Physik, 118 (1941), 343–356 | DOI | MR

[3] Magnus W., “Über eine Bezeihung zwischen Whittakerschen Funktionen”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl., 1946 (1946), 4–5 | MR | Zbl

[4] Olver F.W.J., “The asymptotic solution of linear differential equations of the second order for large values of a parameter”, Philos. Trans. Roy. Soc. London. Ser. A, 247 (1954), 307–327 | DOI | MR

[5] Olver F.W.J., “The asymptotic solution of linear differential equations of the second order in a domain containing one transition point”, Philos. Trans. Roy. Soc. London. Ser. A, 249 (1956), 65–97 | DOI | MR | Zbl

[6] Olver F.W.J., Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press, New York–London, 1974 | MR

[7] Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010 http://dlmf.nist.gov | MR

[8] Slater L.J., Confluent hypergeometric functions, Cambridge University Press, New York, 1960 | MR | Zbl

[9] Temme N.M., “Remarks on Slater's asymptotic expansions of Kummer functions for large values of the $\alpha$-parameter”, Adv. Dyn. Syst. Appl., 8 (2013), 365–377, arXiv: 1306.5328 | MR