@article{SIGMA_2016_12_a41,
author = {Kathy Driver and Kerstin Jordaan},
title = {Zeros of {Quasi-Orthogonal} {Jacobi} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a41/}
}
Kathy Driver; Kerstin Jordaan. Zeros of Quasi-Orthogonal Jacobi Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a41/
[1] Area I., Godoy E., Ronveaux A., Zarzo A., “Solving connection and linearization problems within the Askey scheme and its $q$-analogue via inversion formulas”, J. Comput. Appl. Math., 133 (2001), 151–162 | DOI | MR | Zbl
[2] Askey R. A., “Orthogonal expansions with positive coefficients”, Proc. Amer. Math. Soc., 16 (1965), 1191–1194 | DOI | MR | Zbl
[3] Askey R. A., “Graphs as an aid to understanding special functions”, Asymptotic and computational analysis (Winnipeg, MB, 1989), Lecture Notes in Pure and Appl. Math., 124, Dekker, New York, 1990, 3–33 | MR
[4] Branquinho A., Huertas E. J., Rafaeli F. R., “Zeros of orthogonal polynomials generated by the Geronimus perturbation of measures”, Computational Science and its Applications, ICCSA 2014, v. I, Lecture Notes in Comput. Sci., 8579, Springer, Cham, 2014, 44–59, arXiv: 1402.6256 | DOI | MR
[5] Brezinski C., Driver K. A., Redivo-Zaglia M., “Quasi-orthogonality with applications to some families of classical orthogonal polynomials”, Appl. Numer. Math., 48 (2004), 157–168 | DOI | MR | Zbl
[6] Bustamante J., Martínez-Cruz R., Quesada J. M., “Quasi orthogonal Jacobi polynomials and best one-sided $L_1$ approximation to step functions”, J. Approx. Theory, 198 (2015), 10–23 | DOI | MR | Zbl
[7] Chihara T. S., “On quasi-orthogonal polynomials”, Proc. Amer. Math. Soc., 8 (1957), 765–767 | DOI | MR | Zbl
[8] Dickinson D., “On quasi-orthogonal polynomials”, Proc. Amer. Math. Soc., 12 (1961), 185–194 | DOI | MR | Zbl
[9] Dimitrov D. K., “Connection coefficients and zeros of orthogonal polynomials”, J. Comput. Appl. Math., 133 (2001), 331–340 | DOI | MR | Zbl
[10] Dimitrov D. K., Ismail M. E. H., Rafaeli F. R., “Interlacing of zeros of orthogonal polynomials under modification of the measure”, J. Approx. Theory, 175 (2013), 64–76 | DOI | MR | Zbl
[11] Draux A., “On quasi-orthogonal polynomials”, J. Approx. Theory, 62 (1990), 1–14 | DOI | MR | Zbl
[12] Driver K., Jordaan K., Mbuyi N., “Interlacing of the zeros of Jacobi polynomials with different parameters”, Numer. Algorithms, 49 (2008), 143–152 | DOI | MR | Zbl
[13] Driver K., Muldoon M. E., “Common and interlacing zeros of families of Laguerre polynomials”, J. Approx. Theory, 193 (2015), 89–98 | DOI | MR | Zbl
[14] Fejér L., “Mechanische Quadraturen mit positiven Cotesschen Zahlen”, Math. Z., 37 (1933), 287–309 | DOI | MR
[15] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[16] Maroni P., “Une caractérisation des polynômes orthogonaux semi-classiques”, C. R. Acad. Sci. Paris Sér. I Math., 301 (1985), 269–272 | MR | Zbl
[17] Maroni P., “Prolégomènes à l'étude des polynômes orthogonaux semi-classiques”, Ann. Mat. Pura Appl., 149 (1987), 165–184 | DOI | MR | Zbl
[18] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques”, Orthogonal Polynomials and their Applications (Erice, 1990), IMACS Ann. Comput. Appl. Math., 9, Baltzer, Basel, 1991, 95–130 | MR | Zbl
[19] Rainville E. D., Special functions, The Macmillan Co., New York, 1960 | MR | Zbl
[20] Riesz M., “Sur le problème des moments, III”, Ark. Mat. Astron. Fys., 17 (1923), 1–52
[21] Shohat J., “On mechanical quadratures, in particular, with positive coefficients”, Trans. Amer. Math. Soc., 42 (1937), 461–496 | DOI | MR
[22] Szeg{ő} G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975
[23] Szwarc R., Connection coefficients of orthogonal polynomials,, Canad. Math. Bull., 35 (1992), 548–556 | DOI | MR | Zbl
[24] Trench W. F., “Nonnegative and alternating expansions of one set of orthogonal polynomials in terms of another”, SIAM J. Math. Anal., 4 (1973), 111–115 | DOI | MR | Zbl
[25] Trench W. F., “Proof of a conjecture of Askey on orthogonal expansions with positive coefficients”, Bull. Amer. Math. Soc., 81 (1975), 954–956 | DOI | MR | Zbl
[26] Wilson M. W., “Nonnegative expansions of polynomials”, Proc. Amer. Math. Soc., 24 (1970), 100–102 | DOI | MR | Zbl
[27] Zhedanov A., “Rational spectral transformations and orthogonal polynomials”, J. Comput. Appl. Math., 85 (1997), 67–86 | DOI | MR | Zbl