@article{SIGMA_2016_12_a40,
author = {Konrad Sch\"obel},
title = {Are {Orthogonal} {Separable} {Coordinates} {Really} {Classified?}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a40/}
}
Konrad Schöbel. Are Orthogonal Separable Coordinates Really Classified?. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a40/
[1] Benenti S., “Orthogonal separable dynamical systems”, Differential Geometry and its Applications (Opava, 1992), Math. Publ., 1, eds. O. Kowalsky, D. Krupka, Silesian University Opava, Opava, 1993, 163–184 | MR | Zbl
[2] Borel A., Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer, New York, 1991 | DOI | MR | Zbl
[3] Boyer C. P., Kalnins E. G., Winternitz P., “Separation of variables for the Hamilton–Jacobi equation on complex projective spaces”, SIAM J. Math. Anal., 16 (1985), 93–109 | DOI | MR | Zbl
[4] Davis M., Januszkiewicz T., Scott R., “Nonpositive curvature of blow-ups”, Selecta Math. (N.S.), 4 (1998), 491–547 | DOI | MR | Zbl
[5] Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 75–109 | DOI | MR | Zbl
[6] Devadoss S. L., “Tessellations of moduli spaces and the mosaic operad”, Homotopy Invariant Algebraic Structures (Baltimore, MD, 1998), Contemp. Math., 239, Amer. Math. Soc., Providence, RI, 1999, 91–114, arXiv: math.AG/9807010 | DOI | MR | Zbl
[7] Devadoss S. L., Read R. C., “Cellular structures determined by polygons and trees”, Ann. Comb., 5 (2001), 71–98, arXiv: math.CO/0008145 | DOI | MR | Zbl
[8] Eisenhart L. P., “Separable systems of Stäckel”, Ann. of Math., 35 (1934), 284–305 | DOI | MR
[9] Harris J., Algebraic geometry, Graduate Texts in Mathematics, 133, Springer-Verlag, New York, 1992 | DOI | MR | Zbl
[10] Harris J., Morrison I., Moduli of curves, Graduate Texts in Mathematics, 187, Springer-Verlag, New York, 1998 | DOI | MR | Zbl
[11] Horwood J. T., McLenaghan R. G., Smirnov R. G., “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space”, Comm. Math. Phys., 259 (2005), 670–709, arXiv: math-ph/0605023 | DOI | MR
[12] Izmest'ev A. A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and separation of variables. The $n$-dimensional sphere”, J. Math. Phys., 40 (1999), 1549–1573 | DOI | MR | Zbl
[13] Kalnins E. G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow; John Wiley Sons, Inc., New York, 1986 | MR | Zbl
[14] Kalnins E. G., Miller W. Jr., “Conformal Killing tensors and variable separation for Hamilton–Jacobi equations”, SIAM J. Math. Anal., 14 (1983), 126–137 | DOI | MR | Zbl
[15] Kalnins E. G., Miller W. Jr., “Separation of variables on $n$-dimensional Riemannian manifolds. I. The $n$-sphere $S_n$ and Euclidean $n$-space $R^n$”, J. Math. Phys., 27 (1986), 1721–1736 | DOI | MR | Zbl
[16] Kalnins E. G., Miller W. Jr., Reid G. J., “Separation of variables for complex Riemannian spaces of constant curvature. I. Orthogonal separable coordinates for ${\rm S}_{nC}$ and ${\rm E}_{nC}$”, Proc. Roy. Soc. London Ser. A, 394 (1984), 183–206 | DOI | MR | Zbl
[17] Kapranov M. M., “The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation”, J. Pure Appl. Algebra, 85 (1993), 119–142 | DOI | MR | Zbl
[18] Knudsen F. F., “The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$”, Math. Scand., 52 (1983), 161–199 | MR | Zbl
[19] Knudsen F. F., “The projectivity of the moduli space of stable curves. III. The line bundles on $M_{g,n}$, and a proof of the projectivity of $\overline M_{g,n}$ in characteristic $0$”, Math. Scand., 52 (1983), 200–212 | MR | Zbl
[20] Kress J., Schöbel K., An algebraic geometric classification of superintegrable systems on the Euclidean plane, arXiv: 1602.07890
[21] Müller-Hoissen F., Pallo J. M., Stasheff J. (eds.), Associahedra, Tamari lattices and related structures. Tamari memorial Festschrift, Progress in Mathematical Physics, 299, Birkhäuser/Springer, Basel, 2012 | DOI | MR
[22] Mumford D., Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, 34, Springer-Verlag, Berlin–New York, 1965 | MR | Zbl
[23] Neumann C., “De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur”, J. Reine Angew. Math., 56 (1859), 46–63 | DOI | MR | Zbl
[24] Nijenhuis A., “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 54 (1951), 200–212 | DOI | MR | Zbl
[25] Olevskiĭ M. N., “Triorthogonal systems in spaces of constant curvature in which the equation $\Delta_2u+\lambda u=0$ allows a complete separation of variables”, Mat. Sb., 27 (1950), 379–426 | MR | Zbl
[26] Robertson H. P., “Bemerkung über separierbare Systeme in der Wellenmechanik”, Math. Ann., 98 (1928), 749–752 | DOI | MR | Zbl
[27] Schöbel K., “Algebraic integrability conditions for Killing tensors on constant sectional curvature manifolds”, J. Geom. Phys., 62 (2012), 1013–1037, arXiv: 1004.2872 | DOI | MR | Zbl
[28] Schöbel K., “The variety of integrable Killing tensors on the 3-sphere”, SIGMA, 10 (2014), 080, 48 pp., arXiv: 1205.6227 | DOI | MR | Zbl
[29] Schöbel K., “An algebraic geometric approach to separation of variables”, Springer Spektrum, Wiesbaden, 2015 | DOI | MR
[30] Schöbel K., Veselov A. P., “Separation coordinates, moduli spaces and Stasheff polytopes”, Comm. Math. Phys., 337 (2015), 1255–1274, arXiv: 1307.6132 | DOI | MR | Zbl
[31] Stäckel P., Die Integration der Hamilton–Jacobischen Differentialgleichung mittelst Separation der Variablen, Habilitationsschrift, Universität Halle, 1891
[32] Stasheff J. D., “Homotopy associativity of $H$-spaces, I”, Trans. Amer. Math. Soc., 108 (1963), 275–292 | DOI | MR | Zbl
[33] Stasheff J. D., “Homotopy associativity of $H$-spaces, II”, Trans. Amer. Math. Soc., 108 (1963), 293–312 | DOI | MR | Zbl
[34] Vilenkin N. Ja., Special functions and group representation theory, Nauka, M., 1965 | MR
[35] Vilenkin N. Ja., Klimyk A. U., Representation of Lie groups and special functions, v. 2, Mathematics and its Applications (Soviet Series), 74, Class I representations, special functions, and integral transforms, Kluwer Academic Publishers Group, Dordrecht, 1993 | DOI | MR | Zbl
[36] Wolf T., “Structural equations for Killing tensors of arbitrary rank”, Comput. Phys. Comm., 115 (1998), 316–329 | DOI | MR | Zbl