Weighted Tensor Products of Joyal Species, Graphs, and Charades
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Motivated by the weighted Hurwitz product on sequences in an algebra, we produce a family of monoidal structures on the category of Joyal species. We suggest a family of tensor products for charades. We begin by seeing weighted derivational algebras and weighted Rota–Baxter algebras as special monoids and special semigroups, respectively, for the same monoidal structure on the category of graphs in a monoidal additive category. Weighted derivations are lifted to the categorical level.
Keywords: weighted derivation; Hurwitz series; monoidal category; Joyal species; convolution; Rota–Baxter operator.
@article{SIGMA_2016_12_a4,
     author = {Ross Street},
     title = {Weighted {Tensor} {Products} of {Joyal} {Species,} {Graphs,} and {Charades}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a4/}
}
TY  - JOUR
AU  - Ross Street
TI  - Weighted Tensor Products of Joyal Species, Graphs, and Charades
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a4/
LA  - en
ID  - SIGMA_2016_12_a4
ER  - 
%0 Journal Article
%A Ross Street
%T Weighted Tensor Products of Joyal Species, Graphs, and Charades
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a4/
%G en
%F SIGMA_2016_12_a4
Ross Street. Weighted Tensor Products of Joyal Species, Graphs, and Charades. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a4/

[1] Aguiar M., Ferrer Santos W., Moreira W., The Heisenberg product: from Hopf algebras and species to symmetric functions, arXiv: 1504.06315

[2] Aguiar M., Mahajan S., Monoidal functors, species and Hopf algebras, CRM Monograph Series, 29, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl

[3] Aguiar M., Moreira W., “Combinatorics of the free Baxter algebra”, Electron. J. Combin., 13 (2006), R17, 38 pp., arXiv: math.CO/0510169 | MR | Zbl

[4] Baxter G., “An analytic problem whose solution follows from a simple algebraic identity”, Pacific J. Math., 10 (1960), 731–742 | DOI | MR | Zbl

[5] Cartier P., “On the structure of free Baxter algebras”, Adv. Math., 9 (1972), 253–265 | DOI | MR | Zbl

[6] Chikhladze D., Lack S., Street R., “Hopf monoidal comonads”, Theory Appl. Categ., 24 (2010), 554–563, arXiv: 1002.1122 | MR | Zbl

[7] Day B., Construction of biclosed categories, Ph.D. Thesis, University of New South Wales, 1970 http://www.math.mq.edu.au/\allowbreaks̃treet/DayPhD.pdf

[8] Day B., “On closed categories of functors”, Reports of the Midwest Category Seminar IV, Lecture Notes in Math., 137, Springer, Berlin, 1–38 | DOI | MR

[9] Day B., Street R., “Monoidal bicategories and Hopf algebroids”, Adv. Math., 129 (1997), 99–157 | DOI | MR | Zbl

[10] Ebrahimi-Fard K., Guo L., “Free Rota–Baxter algebras and rooted trees”, J. Algebra Appl., 7 (2008), 167–194, arXiv: math.RA/0510266 | DOI | MR | Zbl

[11] Garner R., Street R., Coalgebras governing both weighted Hurwitz products and their pointwise transforms, arXiv: 1510.05323

[12] Guo L., Keigher W., “On differential Rota–Baxter algebras”, J. Pure Appl. Algebra, 212 (2008), 522–540, arXiv: math.RA/0703780 | DOI | MR | Zbl

[13] Joyal A., “Une théorie combinatoire des séries formelles”, Adv. Math., 42 (1981), 1–82 | DOI | MR | Zbl

[14] Joyal A., “Foncteurs analytiques et espèces de structures”, Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985), Lecture Notes in Math., 1234, Springer, Berlin, 1986, 126–159 | DOI | MR

[15] Joyal A., Street R., “Tortile Yang–Baxter operators in tensor categories”, J. Pure Appl. Algebra, 71 (1991), 43–51 | DOI | MR | Zbl

[16] Joyal A., Street R., “Braided tensor categories”, Adv. Math., 102 (1993), 20–78 | DOI | MR | Zbl

[17] Joyal A., Street R., “The category of representations of the general linear groups over a finite field”, J. Algebra, 176 (1995), 908–946 | DOI | MR | Zbl

[18] Kapranov M. M., “Analogies between the Langlands correspondence and topological quantum field theory”, Functional Analysis on the Eve of the 21st Century (New Brunswick, NJ, 1993), v. 1, Progr. Math., 131, Birkhäuser Boston, Boston, MA, 1995, 119–151 | DOI | MR | Zbl

[19] Kelly G. M., Street R., “Review of the elements of $2$-categories”, Category Seminar, Proc. Sem. (Sydney, 1972/1973), Lecture Notes in Math., 420, Springer, Berlin, 1974, 75–103 | DOI | MR

[20] Moreira W., Products of representations of the symmetric group and non-commutative versions, Ph.D. Thesis, Texas A University, 2008

[21] Rota G.-C., “Baxter algebras and combinatorial identities, I”, Bull. Amer. Math. Soc., 75 (1969), 325–329 | DOI | MR | Zbl

[22] Street R., “Monoidal categories in, and linking, geometry and algebra”, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012), 769–821, arXiv: 1201.2991 | MR

[23] Zhang S., Guo L., Keigher W., “Monads and distributive laws for Rota–Baxter and differential algebras”, Adv. in Appl. Math., 72 (2016), 139–165, arXiv: 1412.8058 | DOI | MR | Zbl