Toda Equations and Piecewise Polynomiality for Mixed Double Hurwitz Numbers
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article introduces mixed double Hurwitz numbers, which interpolate combinatorially between the classical double Hurwitz numbers studied by Okounkov and the monotone double Hurwitz numbers introduced recently by Goulden, Guay-Paquet and Novak. Generalizing a result of Okounkov, we prove that a certain generating series for the mixed double Hurwitz numbers solves the 2-Toda hierarchy of partial differential equations. We also prove that the mixed double Hurwitz numbers are piecewise polynomial, thereby generalizing a result of Goulden, Jackson and Vakil.
Keywords: Hurwitz numbers; Toda lattice.
@article{SIGMA_2016_12_a39,
     author = {I. P. Goulden and Mathieu Guay-Paquet and Jonathan Novak},
     title = {Toda {Equations} and {Piecewise} {Polynomiality} for {Mixed} {Double} {Hurwitz} {Numbers}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a39/}
}
TY  - JOUR
AU  - I. P. Goulden
AU  - Mathieu Guay-Paquet
AU  - Jonathan Novak
TI  - Toda Equations and Piecewise Polynomiality for Mixed Double Hurwitz Numbers
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a39/
LA  - en
ID  - SIGMA_2016_12_a39
ER  - 
%0 Journal Article
%A I. P. Goulden
%A Mathieu Guay-Paquet
%A Jonathan Novak
%T Toda Equations and Piecewise Polynomiality for Mixed Double Hurwitz Numbers
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a39/
%G en
%F SIGMA_2016_12_a39
I. P. Goulden; Mathieu Guay-Paquet; Jonathan Novak. Toda Equations and Piecewise Polynomiality for Mixed Double Hurwitz Numbers. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a39/

[1] Biane P., “Parking functions of types A and B”, Electron. J. Combin., 9 (2002), 7, 5 pp. | MR

[2] Carrell S. R., “Diagonal solutions to the 2-Toda hierarchy”, Math. Res. Lett., 22 (2015), 439–465, arXiv: 1109.1451 | DOI | MR | Zbl

[3] Diaconis P., Greene C., Applications of Murphy's elements, Stanford University Technical Report No 335, 1989

[4] Do N., Dyer A., Mathews D. V., Topological recursion and a quantum curve for monotone Hurwitz numbers, arXiv: 1408.3992

[5] Ekedahl T., Lando S., Shapiro M., Vainshtein A., “Hurwitz numbers and intersections on moduli spaces of curves”, Invent. Math., 146 (2001), 297–327, arXiv: math.AG/0004096 | DOI | MR | Zbl

[6] Farahat H. K., Higman G., “The centres of symmetric group rings”, Proc. Roy. Soc. London Ser. A, 250 (1959), 212–221 | DOI | MR | Zbl

[7] Goulden I. P., Guay-Paquet M., Novak J., “Monotone Hurwitz numbers in genus zero”, Canad. J. Math., 65 (2013), 1020–1042, arXiv: 1204.2618 | DOI | MR | Zbl

[8] Goulden I. P., Guay-Paquet M., Novak J., “Polynomiality of monotone Hurwitz numbers in higher genera”, Adv. Math., 238 (2013), 1–23, arXiv: 1210.3415 | DOI | MR | Zbl

[9] Goulden I. P., Guay-Paquet M., Novak J., “Monotone Hurwitz numbers and the HCIZ integral”, Ann. Math. Blaise Pascal, 21 (2014), 71–89, arXiv: 1107.1015 | DOI | MR | Zbl

[10] Goulden I. P., Jackson D. M., Vakil R., “Towards the geometry of double Hurwitz numbers”, Adv. Math., 198 (2005), 43–92, arXiv: math.AG/0309440 | DOI | MR | Zbl

[11] Johnson P., “Double Hurwitz numbers via the infinite wedge”, Trans. Amer. Math. Soc., 367 (2015), 6415–6440, arXiv: 1008.3266 | DOI | MR | Zbl

[12] Kazarian M. E., Lando S. K., “An algebro-geometric proof of Witten's conjecture”, J. Amer. Math. Soc., 20 (2007), 1079–1089, arXiv: math.AG/0601760 | DOI | MR | Zbl

[13] Matsumoto S., Novak J., “Jucys–Murphy elements and unitary matrix integrals”, Int. Math. Res. Not., 2013 (2013), 362–397, arXiv: 0905.1992 | DOI | MR | Zbl

[14] Novak J., “Vicious walkers and random contraction matrices”, Int. Math. Res. Not., 2009 (2009), 3310–3327, arXiv: 0705.0984 | DOI | MR | Zbl

[15] Okounkov A., “Toda equations for Hurwitz numbers”, Math. Res. Lett., 7 (2000), 447–453, arXiv: math.AG/0004128 | DOI | MR | Zbl

[16] Okounkov A., Pandharipande R., “Gromov–Witten theory, Hurwitz theory, and completed cycles”, Ann. of Math., 163 (2006), 517–560, arXiv: math.AG/0204305 | DOI | MR | Zbl

[17] Okounkov A., Pandharipande R., “The equivariant Gromov–Witten theory of $P^1$”, Ann. of Math., 163 (2006), 561–605, arXiv: math.AG/0207233 | DOI | MR | Zbl

[18] Olshanski G., “Plancherel averages: remarks on a paper by Stanley”, Electron. J. Combin., 17 (2010), 43, 16 pp., arXiv: 0905.1304 | MR

[19] Orlov A. Yu., Shcherbin D. M., “Hypergeometric solutions of soliton equations”, Theoret. and Math. Phys., 128 (2001), 906–926 | DOI | MR | Zbl

[20] Pandharipande R., “The Toda equations and the Gromov–Witten theory of the Riemann sphere”, Lett. Math. Phys., 53 (2000), 59–74, arXiv: math.AG/9912166 | DOI | MR

[21] Shadrin S., Spitz L., Zvonkine D., “On double Hurwitz numbers with completed cycles”, J. London Math. Soc., 86 (2012), 407–432, arXiv: 1103.3120 | DOI | MR | Zbl

[22] Stanley R. P., “Parking functions and noncrossing partitions”, Electron. J. Combin., 4 (1997), 20, 14 pp. | MR