Elliptic Hypergeometric Summations by Taylor Series Expansion and Interpolation
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use elliptic Taylor series expansions and interpolation to deduce a number of summations for elliptic hypergeometric series. We extend to the well-poised elliptic case results that in the $q$-case have previously been obtained by Cooper and by Ismail and Stanton. We also provide identities involving S. Bhargava's cubic theta functions.
Keywords: elliptic hypergeometric series; summations; Taylor series expansion; interpolation.
@article{SIGMA_2016_12_a38,
     author = {Michael J. Schlosser and Meesue Yoo},
     title = {Elliptic {Hypergeometric} {Summations} by {Taylor} {Series} {Expansion} and {Interpolation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a38/}
}
TY  - JOUR
AU  - Michael J. Schlosser
AU  - Meesue Yoo
TI  - Elliptic Hypergeometric Summations by Taylor Series Expansion and Interpolation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a38/
LA  - en
ID  - SIGMA_2016_12_a38
ER  - 
%0 Journal Article
%A Michael J. Schlosser
%A Meesue Yoo
%T Elliptic Hypergeometric Summations by Taylor Series Expansion and Interpolation
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a38/
%G en
%F SIGMA_2016_12_a38
Michael J. Schlosser; Meesue Yoo. Elliptic Hypergeometric Summations by Taylor Series Expansion and Interpolation. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a38/

[1] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, no. 319, 1985, iv+55 pp. | DOI | MR

[2] Baxter R. J., “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type model”, Ann. Physics, 76 (1973), 25–47 | DOI | MR | Zbl

[3] Bhargava S., “Unification of the cubic analogues of the Jacobian theta-function”, J. Math. Anal. Appl., 193 (1995), 543–558 | DOI | MR | Zbl

[4] Bhargava S., Fathima S. N., “Laurent coefficients for cubic theta functions”, South East Asian J. Math. Math. Sci., 1 (2003), 27–31 | MR | Zbl

[5] Cooper S., “The Askey–Wilson operator and the ${}_6\Phi_5$ summation formula”, South East Asian J. Math. Math. Sci., 1 (2002), 71–82 | MR | Zbl

[6] Cooper S., Toh P. C., “Determinant identities for theta functions”, J. Math. Anal. Appl., 347 (2008), 1–7 | DOI | MR | Zbl

[7] Date E., Jimbo M., Kuniba A., Miwa T., Okado M., “Exactly solvable SOS models: local height probabilities and theta function identities”, Nuclear Phys. B, 290 (1987), 231–273 | DOI | MR | Zbl

[8] Frenkel I. B., Turaev V. G., “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, eds. V. I. Arnold, I.M. Gelfand, V.S. Retakh, M. Smirnov, Birkhäuser Boston, Boston, MA, 1997, 171–204 | DOI | MR | Zbl

[9] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[10] Gessel I., Stanton D., “Applications of $q$-Lagrange inversion to basic hypergeometric series”, Trans. Amer. Math. Soc., 277 (1983), 173–201 | DOI | MR | Zbl

[11] Ismail M. E. H., “The Askey–Wilson operator and summation theorems”, Mathematical Analysis, Wavelets, and Signal Processing (Cairo, 1994), Contemp. Math., 190, Amer. Math. Soc., Providence, RI, 1995, 171–178 | DOI | MR | Zbl

[12] Ismail M. E. H., Rains E. M., Stanton D., “Orthogonality of very-well-poised series”, Int. Math. Res. Not. (to appear)

[13] Ismail M. E. H., Stanton D., “Applications of $q$-Taylor theorems”, J. Comput. Appl. Math., 153 (2003), 259–272 | DOI | MR | Zbl

[14] Ismail M. E. H., Stanton D., “Some combinatorial and analytical identities”, Ann. Comb., 16 (2012), 755–771 | DOI | MR | Zbl

[15] Marco J. M., Parcet J., “A new approach to the theory of classical hypergeometric polynomials”, Trans. Amer. Math. Soc., 358 (2006), 183–214, arXiv: math.CO/0312247 | DOI | MR | Zbl

[16] Rains E. M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180, arXiv: math.CO/0402113 | DOI | MR | Zbl

[17] Rains E. M., “Transformations of elliptic hypergeometric integrals”, Ann. of Math., 171 (2010), 169–243, arXiv: math.QA/0309252 | DOI | MR | Zbl

[18] Rosengren H., “Sklyanin invariant integration”, Int. Math. Res. Not., 2004 (2004), 3207–3232, arXiv: math.QA/0405072 | DOI | MR | Zbl

[19] Rosengren H., “An elementary approach to $6j$-symbols (classical, quantum, rational, trigonometric, and elliptic)”, Ramanujan J., 13 (2007), 131–166, arXiv: math.CA/0312310 | DOI | MR | Zbl

[20] Rosengren H., Schlosser M., “Elliptic determinant evaluations and the Macdonald identities for affine root systems”, Compos. Math., 142 (2006), 937–961, arXiv: math.CA/0505213 | DOI | MR | Zbl

[21] Schlosser M. J., “A Taylor expansion theorem for an elliptic extension of the Askey–Wilson operator”, Special Functions and Orthogonal Polynomials, Contemp. Math., 471, Amer. Math. Soc., Providence, RI, 2008, 175–186, arXiv: 0803.2329 | DOI | MR | Zbl

[22] Schultz D., “Cubic theta functions”, Adv. Math., 248 (2013), 618–697 | DOI | MR | Zbl

[23] Spiridonov V. P., “Theta hypergeometric series”, Asymptotic Combinatorics with Application to Mathematical Physics (St. {P}etersburg, 2001), NATO Sci. Ser. II Math. Phys. Chem., 77, eds. V. A. Malyshev, A. M. Vershik, Kluwer Acad. Publ., Dordrecht, 2002, 307–327, arXiv: math.CA/0303204 | MR | Zbl

[24] Warnaar S. O., “Summation and transformation formulas for elliptic hypergeometric series”, Constr. Approx., 18 (2002), 479–502, arXiv: math.QA/0001006 | DOI | MR | Zbl

[25] Weber H., Elliptische Functionen und Algebraische Zahlen, Vieweg u. Sohn, Braunschweig, 1891 | Zbl

[26] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl