The Transition Probability of the $q$-TAZRP ($q$-Bosons) with Inhomogeneous Jump Rates
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider the $q$-deformed totally asymmetric zero range process ($q$-TAZRP), also known as the $q$-boson (stochastic) particle system, on the $\mathbb{Z}$ lattice, such that the jump rate of a particle depends on the site where it is on the lattice. We derive the transition probability for an $n$ particle process in Bethe ansatz form as a sum of $n!$ $n$-fold contour integrals. Our result generalizes the transition probability formula by Korhonen and Lee for $q$-TAZRP with a homogeneous lattice, and our method follows the same approach as theirs.
Keywords: zero range process; transition probability; interacting particle systems; Bethe ansatz.
@article{SIGMA_2016_12_a36,
     author = {Dong Wang and David Waugh},
     title = {The {Transition} {Probability} of the $q${-TAZRP} ($q${-Bosons)} with {Inhomogeneous} {Jump} {Rates}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a36/}
}
TY  - JOUR
AU  - Dong Wang
AU  - David Waugh
TI  - The Transition Probability of the $q$-TAZRP ($q$-Bosons) with Inhomogeneous Jump Rates
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a36/
LA  - en
ID  - SIGMA_2016_12_a36
ER  - 
%0 Journal Article
%A Dong Wang
%A David Waugh
%T The Transition Probability of the $q$-TAZRP ($q$-Bosons) with Inhomogeneous Jump Rates
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a36/
%G en
%F SIGMA_2016_12_a36
Dong Wang; David Waugh. The Transition Probability of the $q$-TAZRP ($q$-Bosons) with Inhomogeneous Jump Rates. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a36/

[1] Balázs M., Komjáthy J., “Order of current variance and diffusivity in the rate one totally asymmetric zero range process”, J. Stat. Phys., 133 (2008), 59–78, arXiv: 0804.1397 | DOI | MR | Zbl

[2] Borodin A., Corwin I., “Macdonald processes”, Probab. Theory Related Fields, 158 (2014), 225–400, arXiv: 1111.4408 | DOI | MR | Zbl

[3] Borodin A., Corwin I., Petrov L., Sasamoto T., “Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz”, Comm. Math. Phys., 339 (2015), 1167–1245, arXiv: 1407.8534 | DOI | MR | Zbl

[4] Borodin A., Corwin I., Petrov L., Sasamoto T., “Spectral theory for the $q$-Boson particle system”, Compos. Math., 151 (2015), 1–67, arXiv: 1308.3475 | DOI | MR | Zbl

[5] Borodin A., Corwin I., Sasamoto T., “From duality to determinants for $q$-TASEP and ASEP”, Ann. Probab., 42 (2014), 2314–2382, arXiv: 1207.5035 | DOI | MR | Zbl

[6] Borodin A., Petrov L., Higher spin six vertex model and symmetric rational functions, arXiv: 1601.05770

[7] Corwin I., “The Kardar–Parisi–Zhang equation and universality class”, Random Matrices Theory Appl., 1 (2012), 1130001, 76 pp., arXiv: 1106.1596 | DOI | MR | Zbl

[8] Gwa L.-H., Spohn H., “Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian”, Phys. Rev. Lett., 68 (1992), 725–728 | DOI | MR | Zbl

[9] Korhonen M., Lee E., “The transition probability and the probability for the left-most particle's position of the $q$-totally asymmetric zero range process”, J. Math. Phys., 55 (2014), 013301, 15 pp., arXiv: 1308.4769 | DOI | MR | Zbl

[10] Lee E., “Transition probabilities of the Bethe ansatz solvable interacting particle systems”, J. Stat. Phys., 142 (2011), 643–656, arXiv: 1011.2841 | DOI | MR | Zbl

[11] Liggett T. M., Interacting particle systems, Classics in Mathematics, Springer-Verlag, Berlin, 2005 | DOI | MR | Zbl

[12] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[13] Povolotsky A. M., “On the integrability of zero-range chipping models with factorized steady states”, J. Phys. A: Math. Theor., 46 (2013), 465205, 25 pp., arXiv: 1308.3250 | DOI | MR | Zbl

[14] Quastel J., “Introduction to KPZ”, Current Developments in Mathematics (2011), Int. Press, Somerville, MA, 2012, 125–194 | MR | Zbl

[15] Sasamoto T., Wadati M., “Exact results for one-dimensional totally asymmetric diffusion models”, J. Phys. A: Math. Gen., 31 (1998), 6057–6071 | DOI | MR | Zbl

[16] Schütz G. M., “Exact solution of the master equation for the asymmetric exclusion process”, J. Stat. Phys., 88 (1997), 427–445, arXiv: cond-mat/9701019 | DOI | MR | Zbl

[17] Spitzer F., “Interaction of Markov processes”, Adv. Math., 5 (1970), 246–290 | DOI | MR | Zbl

[18] Tracy C. A., Widom H., “Integral formulas for the asymmetric simple exclusion process”, Comm. Math. Phys., 279 (2008), 815–844, arXiv: 0704.2633 | DOI | MR | Zbl

[19] Tracy C. A., Widom H., “Asymptotics in ASEP with step initial condition”, Comm. Math. Phys., 290 (2009), 129–154, arXiv: 0807.1713 | DOI | MR | Zbl