@article{SIGMA_2016_12_a35,
author = {Sorin V. Sabau},
title = {The {Co-Points} of {Rays} are {Cut} {Points} of {Upper} {Level} {Sets} for {Busemann} {Functions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a35/}
}
Sorin V. Sabau. The Co-Points of Rays are Cut Points of Upper Level Sets for Busemann Functions. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a35/
[1] Bao D., Chern S.-S., Shen Z., An introduction to Riemann–Finsler geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000 | DOI | MR | Zbl
[2] Busemann H., The geometry of geodesics, Academic Press Inc., New York, N.Y., 1955 | MR | Zbl
[3] Egloff D., “Uniform Finsler Hadamard manifolds”, Ann. Inst. H. Poincaré Phys. Théor., 66 (1997), 323–357 | MR | Zbl
[4] Innami N., “Differentiability of Busemann functions and total excess”, Math. Z., 180 (1982), 235–247 | DOI | MR | Zbl
[5] Innami N., “On the terminal points of co-rays and rays”, Arch. Math. (Basel), 45 (1985), 468–470 | DOI | MR | Zbl
[6] Lewis G. M., “Cut loci of points at infinity”, Pacific J. Math., 43 (1972), 675–690 | DOI | MR | Zbl
[7] Nasu Y., “On asymptotes in a metric space with non-positive curvature”, Tôhoku Math. J., 9 (1957), 68–95 | DOI | MR | Zbl
[8] Ohta S.-I., “Splitting theorems for Finsler manifolds of nonnegative Ricci curvature”, J. Reine Angew. Math., 700 (2015), 155–174 | DOI | MR | Zbl
[9] Shen Z., Lectures on Finsler geometry, World Scientific Publishing Co., Singapore, 2001 | DOI | MR | Zbl
[10] Shiohama K., “Topology of complete noncompact manifolds”, Geometry of Geodesics and Related Topics (Tokyo, 1982), Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1984, 423–450 | MR
[11] Shiohama K., Shioya T., Tanaka M., The geometry of total curvature on complete open surfaces, Cambridge Tracts in Mathematics, 159, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl
[12] Tanaka M., Sabau S. V., “The cut locus and distance function from a closed subset of a Finsler manifold”, Houston J. Math. (to appear) , arXiv: 1207.0918