@article{SIGMA_2016_12_a34,
author = {Nizar Demni},
title = {Generalized {Stieltjes} {Transforms} of {Compactly-Supported} {Probability} {Distributions:} {Further} {Examples}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a34/}
}
TY - JOUR AU - Nizar Demni TI - Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a34/ LA - en ID - SIGMA_2016_12_a34 ER -
Nizar Demni. Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a34/
[1] Al-Salam W. A., Verma A., “Some sets of orthogonal polynomials”, Rev. Técn. Fac. Ingr. Univ. Zulia, 9 (1986), 83–88 | MR | Zbl
[2] Biane P., “Representations of symmetric groups and free probability”, Adv. Math., 138 (1998), 126–181 | DOI | MR | Zbl
[3] Biane P., “Approximate factorization and concentration for characters of symmetric groups”, Int. Math. Res. Not., 2001:4 (2001), 179–192, arXiv: math.RT/0006111 | DOI | MR | Zbl
[4] Cabanal-Duvillard D., Ionescu V., “Un théorème central limite pour des variables aléatoires non-commutatives”, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 1117–1120 | DOI | MR | Zbl
[5] Cohl H. S., “Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems”, SIGMA, 9 (2013), 042, 26 pp., arXiv: 1209.6047 | DOI | MR | Zbl
[6] Demni N., “Generalized Cauchy–Stieltjes transforms of some beta distributions”, Commun. Stoch. Anal., 3 (2009), 197–210, arXiv: 0902.0054 | MR | Zbl
[7] Demni N., “Ultraspherical type generating functions for orthogonal polynomials”, Probab. Math. Statist., 29 (2009), 281–296, arXiv: 0812.3666 | MR | Zbl
[8] Dufresne D., “The beta product distribution with complex parameters”, Comm. Statist. Theory Methods, 39 (2010), 837–854 | DOI | MR | Zbl
[9] Dufresne D., “$G$ distributions and the beta-gamma algebra”, Electron. J. Probab., 15:71 (2010), 2163–2199 | DOI | MR | Zbl
[10] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, Bateman Manuscript Project, McGraw-Hill Book Co., New York
[11] Glasser M. L., “Hypergeometric functions and the trinomial equation. Higher transcendental functions and their applications”, J. Comput. Appl. Math., 118 (2000), 169–173 | DOI | MR | Zbl
[12] Hille E., Analytic function theory, v. 1, Introduction to Higher Mathematics, Ginn and Company, Boston, 1959 | MR | Zbl
[13] Ismail M. E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[14] Karp D., Prilepkina E., “Generalized Stieltjes functions and their exact order”, J. Class. Anal., 1 (2012), 53–74 | MR
[15] Karp D., Prilepkina E., “Hypergeometric functions as generalized Stieltjes transforms”, J. Math. Anal. Appl., 393 (2012), 348–359, arXiv: 1112.5769 | DOI | MR | Zbl
[16] Kerov S. V., “Transition probabilities of continual Young diagrams and the Markov moment problem”, Funct. Anal. Appl., 27 (1993), 104–117 | DOI | MR | Zbl
[17] Kerov S. V., “Interlacing measures, in Kirillov's Seminar on Representation Theory”, Amer. Math. Soc. Transl. Ser. 2, 181, Amer. Math. Soc., Providence, RI, 1998, 35–83 | MR | Zbl
[18] Koornwinder T. H., “Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators”, SIGMA, 11 (2015), 074, 22 pp., arXiv: 1504.08144 | DOI | MR | Zbl
[19] Lamiri I., Ouni A., “$d$-orthogonality of Humbert and Jacobi type polynomials”, J. Math. Anal. Appl., 341 (2008), 24–51 | DOI | MR | Zbl
[20] Nica A., Speicher R., Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, 335, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl
[21] Rainville E. D., Special functions, The Macmillan Co., New York, 1960 | MR | Zbl
[22] Shohat J. A., Tamarkin J. D., The problem of moments, American Mathematical Society Mathematical Surveys, 1, American Mathematical Society, New York, 1943 | MR
[23] Soltani A. R., Homei H., “Weighted averages with random proportions that are jointly uniformly distributed over the unit simplex”, Statist. Probab. Lett., 79 (2009), 1215–1218 | DOI | MR | Zbl
[24] Soltani A. R., Roozegar R., “On distribution of randomly ordered uniform incremental weighted averages: divided difference approach”, Statist. Probab. Lett., 82 (2012), 1012–1020 | DOI | MR | Zbl
[25] Srivastava H. M., Manocha H. L., A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press, New York, 1984 | MR | Zbl
[26] Szegő G., Orthogonal polynomials, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR
[27] Van Assche W., “A random variable uniformly distributed between two independent random variables”, Sankhyā Ser. A, 49 (1987), 207–211 | MR | Zbl
[28] Widder D. V., “The Stieltjes transform”, Trans. Amer. Math. Soc., 43 (1938), 7–60 | DOI | MR