@article{SIGMA_2016_12_a32,
author = {Charles F. Dunkl},
title = {Orthogonality {Measure} on the {Torus} for {Vector-Valued} {Jack} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a32/}
}
Charles F. Dunkl. Orthogonality Measure on the Torus for Vector-Valued Jack Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a32/
[1] Beerends R. J., Opdam E. M., “Certain hypergeometric series related to the root system $BC$”, Trans. Amer. Math. Soc., 339 (1993), 581–609 | DOI | MR | Zbl
[2] Dunkl C. F., “Differential-difference operators and monodromy representations of Hecke algebras”, Pacific J. Math., 159 (1993), 271–298 | DOI | MR | Zbl
[3] Dunkl C. F., “Symmetric and antisymmetric vector-valued Jack polynomials”, Sém. Lothar. Combin., 64 (2010), Art. B64a, 31 pp., arXiv: 1001.4485 | MR
[4] Dunkl C. F., “Vector polynomials and a matrix weight associated to dihedral groups”, SIGMA, 10 (2014), 044, 23 pp., arXiv: 1306.6599 | DOI | MR | Zbl
[5] Dunkl C. F., Luque J. G., “Vector-valued Jack polynomials from scratch”, SIGMA, 7 (2011), 026, 48 pp., arXiv: 1009.2366 | DOI | MR | Zbl
[6] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 2nd ed., Cambridge University Press, Cambridge, 2014 | DOI | MR | Zbl
[7] Etingof P., Stoica E., “Unitary representations of rational Cherednik algebras”, Represent. Theory, 13 (2009), 349–370, arXiv: 0901.4595 | DOI | MR | Zbl
[8] Griffeth S., “Orthogonal functions generalizing Jack polynomials”, Trans. Amer. Math. Soc., 362 (2010), 6131–6157, arXiv: 0707.0251 | DOI | MR | Zbl
[9] James G., Kerber A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981 | MR | Zbl
[10] Lapointe L., Vinet L., “Exact operator solution of the Calogero–Sutherland model”, Comm. Math. Phys., 178 (1996), 425–452 | DOI | MR | Zbl
[11] Murphy G. E., “A new construction of Young's seminormal representation of the symmetric groups”, J. Algebra, 69 (1981), 287–297 | DOI | MR | Zbl
[12] Opdam E. M., “Harmonic analysis for certain representations of graded Hecke algebras”, Acta Math., 175 (1995), 75–121 | DOI | MR | Zbl
[13] Rudin W., Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, 12, Interscience Publishers, New York–London, 1962 | MR | Zbl
[14] Vershik A. M., Okunkov A. Yu., J. Math. Sci., 131 (2005), A new approach to representation theory of symmetric groups, II, arXiv: math.RT/0503040 | DOI | MR