@article{SIGMA_2016_12_a3,
author = {Tao Cheng and Hua-Lin Huang and Yuping Yang},
title = {Generalized {Clifford} {Algebras} as {Algebras} in {Suitable} {Symmetric} {Linear} {Gr-Categories}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a3/}
}
TY - JOUR AU - Tao Cheng AU - Hua-Lin Huang AU - Yuping Yang TI - Generalized Clifford Algebras as Algebras in Suitable Symmetric Linear Gr-Categories JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a3/ LA - en ID - SIGMA_2016_12_a3 ER -
%0 Journal Article %A Tao Cheng %A Hua-Lin Huang %A Yuping Yang %T Generalized Clifford Algebras as Algebras in Suitable Symmetric Linear Gr-Categories %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a3/ %G en %F SIGMA_2016_12_a3
Tao Cheng; Hua-Lin Huang; Yuping Yang. Generalized Clifford Algebras as Algebras in Suitable Symmetric Linear Gr-Categories. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a3/
[1] Albuquerque H., Majid S., “Quasialgebra structure of the octonions”, J. Algebra, 220 (1999), 188–224, arXiv: math.QA/9802116 | DOI | MR | Zbl
[2] Albuquerque H., Majid S., “Clifford algebras obtained by twisting of group algebras”, J. Pure Appl. Algebra, 171 (2002), 133–148, arXiv: math.QA/0011040 | DOI | MR | Zbl
[3] Bulacu D., “The weak braided Hopf algebra structure of some Cayley–Dickson algebras”, J. Algebra, 322 (2009), 2404–2427 | DOI | MR | Zbl
[4] Bulacu D., “A Clifford algebra is a weak Hopf algebra in a suitable symmetric monoidal category”, J. Algebra, 332 (2011), 244–284 | DOI | MR | Zbl
[5] Drinfeld V. G., “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1990), 1419–1457 | MR | Zbl
[6] Huang H.-L., Liu G., Ye Y., “The braided monoidal structures on a class of linear Gr-categories”, Algebr. Represent. Theory, 17 (2014), 1249–1265, arXiv: 1206.5402 | DOI | MR | Zbl
[7] Huang H.-L., Liu G., Ye Y., On braided linear Gr-categories, arXiv: 1310.1529
[8] Jagannathan R., “On generalized Clifford algebras and their physical applications”, The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, Springer, New York, 2010, 465–489, arXiv: 1005.4300 | DOI | MR | Zbl
[9] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[10] Knus M. A., “A generalisation of Clifford algebras”, Math. Z., 110 (1969), 171–176 | DOI | MR | Zbl
[11] Long F. W., “Generalized Clifford algebras and dimodule algebras”, J. London Math. Soc., 13 (1976), 438–442 | DOI | MR | Zbl
[12] Majid S., “Algebras and Hopf algebras in braided categories”, Advances in Hopf Algebras (Chicago, IL, 1992), Lecture Notes in Pure and Appl. Math., 158, Dekker, New York, 1994, 55–105, arXiv: q-alg/9509023 | MR | Zbl
[13] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[14] Milnor J., Introduction to algebraic $K$-theory, Annals of Mathematics Studies, 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971 | MR | Zbl
[15] Morier-Genoud S., Ovsienko V., “A series of algebras generalizing the octonions and Hurwitz–Radon identity”, Comm. Math. Phys., 306 (2011), 83–118, arXiv: 1003.0429 | DOI | MR | Zbl
[16] Morris A. O., “On a generalized Clifford algebra”, Quart. J. Math., 18 (1967), 7–12 | DOI | MR | Zbl
[17] Morris A. O., “On a generalized Clifford algebra, II”, Quart. J. Math., 19 (1968), 289–299 | DOI | MR | Zbl
[18] Thomas E., “A generalization of Clifford algebras”, Glasgow Math. J., 15 (1974), 74–78 | DOI | MR | Zbl