@article{SIGMA_2016_12_a29,
author = {Remi Cocou Avohou},
title = {Polynomial {Invariants} for {Arbitrary} {Rank~}$D$ {Weakly-Colored} {Stranded} {Graphs}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a29/}
}
Remi Cocou Avohou. Polynomial Invariants for Arbitrary Rank $D$ Weakly-Colored Stranded Graphs. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a29/
[1] Avohou R. C., Ben Geloun J., Hounkonnou M. N., A polynomial invariant for rank 3 weakly-colored stranded graphs, arXiv: 1301.1987
[2] Avohou R. C., Ben Geloun J., Livine E. R., “On terminal forms for topological polynomials for ribbon graphs: the $N$-petal flower”, European J. Combin., 36 (2014), 348–366, arXiv: 1212.5961 | DOI | MR | Zbl
[3] Ben Geloun J., Krajewski T., Magnen J., Rivasseau V., “Linearized group field theory and power-counting theorems”, Classical Quantum Gravity, 27 (2010), 155012, 14 pp., arXiv: 1002.3592 | DOI | MR | Zbl
[4] Ben Geloun J., Magnen J., Rivasseau V., “Bosonic colored group field theory”, Eur. Phys. J. C Part. Fields, 70 (2010), 1119–1130, arXiv: 0911.1719 | DOI
[5] Bollobás B., Modern graph theory, Graduate Texts in Mathematics, 184, Springer-Verlag, New York, 1998 | DOI | MR | Zbl
[6] Bollobás B., Riordan O., “A polynomial invariant of graphs on orientable surfaces”, Proc. London Math. Soc., 83 (2001), 513–531 | DOI | MR | Zbl
[7] Bollobás B., Riordan O., “A polynomial of graphs on surfaces”, Math. Ann., 323 (2002), 81–96 | DOI | MR | Zbl
[8] Ellis-Monaghan J. A., Moffatt I., Graphs on surfaces. Dualities, polynomials, and knots, Springer Briefs in Mathematics, Springer, New York, 2013 | DOI | MR | Zbl
[9] Gurau R., “Lost in translation: topological singularities in group field theory”, Classical Quantum Gravity, 27 (2010), 235023, 20 pp., arXiv: 1006.0714 | DOI | MR | Zbl
[10] Gurau R., “Topological graph polynomials in colored group field theory”, Ann. Henri Poincaré, 11 (2010), 565–584, arXiv: 0911.1945 | DOI | MR | Zbl
[11] Gurau R., “Colored group field theory”, Comm. Math. Phys., 304 (2011), 69–93, arXiv: 0907.2582 | DOI | MR | Zbl
[12] Gurau R., “The complete $1/N$ expansion of colored tensor models in arbitrary dimension”, Ann. Henri Poincaré, 13 (2012), 399–423, arXiv: 1102.5759 | DOI | MR | Zbl
[13] Gurau R., Ryan J. P., “Colored tensor models — a review”, SIGMA, 8 (2012), 020, 78 pp., arXiv: 1109.4812 | DOI | MR | Zbl
[14] Krajewski T., Rivasseau V., Tanas{ă} A., Wang Z., “Topological graph polynomials and quantum field theory. I: Heat kernel theories”, J. Noncommut. Geom., 4 (2010), 29–82, arXiv: 0811.0186 | DOI | MR | Zbl
[15] Ryan J. P., “Tensor models and embedded Riemann surfaces”, Phys. Rev. D, 85 (2012), 024010, 9 pp., arXiv: 1104.5471 | DOI
[16] Tanas{ă} A., “Generalization of the Bollobás–Riordan polynomial for tensor graphs”, J. Math. Phys., 52 (2011), 073514, 17 pp., arXiv: 1012.1798 | DOI | MR | Zbl
[17] Tutte W. T., Graph theory, Encyclopedia of Mathematics and its Applications, 21, Addison-Wesley Publishing Company, Reading, MA, 1984 | MR | Zbl
[18] Wolsey L. A., Integer programming, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley Sons, Inc., New York, 1998 | MR