Polynomial Invariants for Arbitrary Rank $D$ Weakly-Colored Stranded Graphs
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás–Riordan polynomials [Math. Ann. 323 (2002), 81–96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension $D\geq3$ a modified Euler characteristic with $D-2$ parameters. Using this modified invariant, we extend the rank $3$ weakly-colored graph polynomial, and its main properties, on rank $4$ and then on arbitrary rank $D$ weakly-colored stranded graphs.
Keywords: Tutte polynomial; Bollobás–Riordan polynomial; graph polynomial invariant; colored graph; Ribbon graph; Euler characteristic.
@article{SIGMA_2016_12_a29,
     author = {Remi Cocou Avohou},
     title = {Polynomial {Invariants} for {Arbitrary} {Rank~}$D$ {Weakly-Colored} {Stranded} {Graphs}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a29/}
}
TY  - JOUR
AU  - Remi Cocou Avohou
TI  - Polynomial Invariants for Arbitrary Rank $D$ Weakly-Colored Stranded Graphs
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a29/
LA  - en
ID  - SIGMA_2016_12_a29
ER  - 
%0 Journal Article
%A Remi Cocou Avohou
%T Polynomial Invariants for Arbitrary Rank $D$ Weakly-Colored Stranded Graphs
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a29/
%G en
%F SIGMA_2016_12_a29
Remi Cocou Avohou. Polynomial Invariants for Arbitrary Rank $D$ Weakly-Colored Stranded Graphs. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a29/

[1] Avohou R. C., Ben Geloun J., Hounkonnou M. N., A polynomial invariant for rank 3 weakly-colored stranded graphs, arXiv: 1301.1987

[2] Avohou R. C., Ben Geloun J., Livine E. R., “On terminal forms for topological polynomials for ribbon graphs: the $N$-petal flower”, European J. Combin., 36 (2014), 348–366, arXiv: 1212.5961 | DOI | MR | Zbl

[3] Ben Geloun J., Krajewski T., Magnen J., Rivasseau V., “Linearized group field theory and power-counting theorems”, Classical Quantum Gravity, 27 (2010), 155012, 14 pp., arXiv: 1002.3592 | DOI | MR | Zbl

[4] Ben Geloun J., Magnen J., Rivasseau V., “Bosonic colored group field theory”, Eur. Phys. J. C Part. Fields, 70 (2010), 1119–1130, arXiv: 0911.1719 | DOI

[5] Bollobás B., Modern graph theory, Graduate Texts in Mathematics, 184, Springer-Verlag, New York, 1998 | DOI | MR | Zbl

[6] Bollobás B., Riordan O., “A polynomial invariant of graphs on orientable surfaces”, Proc. London Math. Soc., 83 (2001), 513–531 | DOI | MR | Zbl

[7] Bollobás B., Riordan O., “A polynomial of graphs on surfaces”, Math. Ann., 323 (2002), 81–96 | DOI | MR | Zbl

[8] Ellis-Monaghan J. A., Moffatt I., Graphs on surfaces. Dualities, polynomials, and knots, Springer Briefs in Mathematics, Springer, New York, 2013 | DOI | MR | Zbl

[9] Gurau R., “Lost in translation: topological singularities in group field theory”, Classical Quantum Gravity, 27 (2010), 235023, 20 pp., arXiv: 1006.0714 | DOI | MR | Zbl

[10] Gurau R., “Topological graph polynomials in colored group field theory”, Ann. Henri Poincaré, 11 (2010), 565–584, arXiv: 0911.1945 | DOI | MR | Zbl

[11] Gurau R., “Colored group field theory”, Comm. Math. Phys., 304 (2011), 69–93, arXiv: 0907.2582 | DOI | MR | Zbl

[12] Gurau R., “The complete $1/N$ expansion of colored tensor models in arbitrary dimension”, Ann. Henri Poincaré, 13 (2012), 399–423, arXiv: 1102.5759 | DOI | MR | Zbl

[13] Gurau R., Ryan J. P., “Colored tensor models — a review”, SIGMA, 8 (2012), 020, 78 pp., arXiv: 1109.4812 | DOI | MR | Zbl

[14] Krajewski T., Rivasseau V., Tanas{ă} A., Wang Z., “Topological graph polynomials and quantum field theory. I: Heat kernel theories”, J. Noncommut. Geom., 4 (2010), 29–82, arXiv: 0811.0186 | DOI | MR | Zbl

[15] Ryan J. P., “Tensor models and embedded Riemann surfaces”, Phys. Rev. D, 85 (2012), 024010, 9 pp., arXiv: 1104.5471 | DOI

[16] Tanas{ă} A., “Generalization of the Bollobás–Riordan polynomial for tensor graphs”, J. Math. Phys., 52 (2011), 073514, 17 pp., arXiv: 1012.1798 | DOI | MR | Zbl

[17] Tutte W. T., Graph theory, Encyclopedia of Mathematics and its Applications, 21, Addison-Wesley Publishing Company, Reading, MA, 1984 | MR | Zbl

[18] Wolsey L. A., Integer programming, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley Sons, Inc., New York, 1998 | MR