@article{SIGMA_2016_12_a26,
author = {Tam\'as F. G\"orbe},
title = {A {Simple} {Proof} of {Sklyanin's} {Formula} for {Canonical} {Spectral} {Coordinates} of the {Rational} {Calogero{\textendash}Moser} {System}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2016},
volume = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a26/}
}
TY - JOUR AU - Tamás F. Görbe TI - A Simple Proof of Sklyanin's Formula for Canonical Spectral Coordinates of the Rational Calogero–Moser System JO - Symmetry, integrability and geometry: methods and applications PY - 2016 VL - 12 UR - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a26/ LA - en ID - SIGMA_2016_12_a26 ER -
%0 Journal Article %A Tamás F. Görbe %T A Simple Proof of Sklyanin's Formula for Canonical Spectral Coordinates of the Rational Calogero–Moser System %J Symmetry, integrability and geometry: methods and applications %D 2016 %V 12 %U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a26/ %G en %F SIGMA_2016_12_a26
Tamás F. Görbe. A Simple Proof of Sklyanin's Formula for Canonical Spectral Coordinates of the Rational Calogero–Moser System. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a26/
[1] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 ; Erratum, J. Math. Phys., 37 (1996), 3646 | DOI | MR | DOI | MR | Zbl
[2] Calogero F., Classical many-body problems amenable to exact treatments, Lecture Notes in Physics, 66, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl
[3] Falqui G., Mencattini I., Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system, arXiv: 1511.06339
[4] Kazhdan D., Kostant B., Sternberg S., “Hamiltonian group actions and dynamical systems of Calogero type”, Comm. Pure Appl. Math., 31 (1978), 481–507 | DOI | MR | Zbl
[5] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl
[6] Perelomov A. M., Integrable systems of classical mechanics and Lie algebras, v. I, Birkhäuser Verlag, Basel, 1990 | DOI | MR | Zbl
[7] Ruijsenaars S. N. M., “Action-angle maps and scattering theory for some finite-dimensional integrable systems. I: The pure soliton case”, Comm. Math. Phys., 115 (1988), 127–165 | DOI | MR | Zbl
[8] Sklyanin E., “Bispectrality and separation of variables in multiparticle hypergeometric systems”, Quantum Integrable Discrete Systems (Cambridge, England, March 23–27, 2009), Talk given at the Workshop
[9] Sklyanin E., “Bispectrality for the quantum open Toda chain”, J. Phys. A: Math. Theor., 46 (2013), 382001, 8 pp., arXiv: 1306.0454 | DOI | MR | Zbl
[10] Sutherland B., Beautiful models: 70 years of exactly solved quantum many-body problems, World Sci. Publ. Co., Inc., River Edge, NJ, 2004 | DOI | MR | Zbl