A Simple Proof of Sklyanin's Formula for Canonical Spectral Coordinates of the Rational Calogero–Moser System
Symmetry, integrability and geometry: methods and applications, Tome 12 (2016) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use Hamiltonian reduction to simplify Falqui and Mencattini's recent proof of Sklyanin's expression providing spectral Darboux coordinates of the rational Calogero–Moser system. This viewpoint enables us to verify a conjecture of Falqui and Mencattini, and to obtain Sklyanin's formula as a corollary.
Keywords: integrable systems; Calogero–Moser type systems; spectral coordinates; Hamiltonian reduction; action-angle duality.
@article{SIGMA_2016_12_a26,
     author = {Tam\'as F. G\"orbe},
     title = {A {Simple} {Proof} of {Sklyanin's} {Formula} for {Canonical} {Spectral} {Coordinates} of the {Rational} {Calogero{\textendash}Moser} {System}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2016},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a26/}
}
TY  - JOUR
AU  - Tamás F. Görbe
TI  - A Simple Proof of Sklyanin's Formula for Canonical Spectral Coordinates of the Rational Calogero–Moser System
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2016
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a26/
LA  - en
ID  - SIGMA_2016_12_a26
ER  - 
%0 Journal Article
%A Tamás F. Görbe
%T A Simple Proof of Sklyanin's Formula for Canonical Spectral Coordinates of the Rational Calogero–Moser System
%J Symmetry, integrability and geometry: methods and applications
%D 2016
%V 12
%U http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a26/
%G en
%F SIGMA_2016_12_a26
Tamás F. Görbe. A Simple Proof of Sklyanin's Formula for Canonical Spectral Coordinates of the Rational Calogero–Moser System. Symmetry, integrability and geometry: methods and applications, Tome 12 (2016). http://geodesic.mathdoc.fr/item/SIGMA_2016_12_a26/

[1] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 ; Erratum, J. Math. Phys., 37 (1996), 3646 | DOI | MR | DOI | MR | Zbl

[2] Calogero F., Classical many-body problems amenable to exact treatments, Lecture Notes in Physics, 66, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl

[3] Falqui G., Mencattini I., Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system, arXiv: 1511.06339

[4] Kazhdan D., Kostant B., Sternberg S., “Hamiltonian group actions and dynamical systems of Calogero type”, Comm. Pure Appl. Math., 31 (1978), 481–507 | DOI | MR | Zbl

[5] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl

[6] Perelomov A. M., Integrable systems of classical mechanics and Lie algebras, v. I, Birkhäuser Verlag, Basel, 1990 | DOI | MR | Zbl

[7] Ruijsenaars S. N. M., “Action-angle maps and scattering theory for some finite-dimensional integrable systems. I: The pure soliton case”, Comm. Math. Phys., 115 (1988), 127–165 | DOI | MR | Zbl

[8] Sklyanin E., “Bispectrality and separation of variables in multiparticle hypergeometric systems”, Quantum Integrable Discrete Systems (Cambridge, England, March 23–27, 2009), Talk given at the Workshop

[9] Sklyanin E., “Bispectrality for the quantum open Toda chain”, J. Phys. A: Math. Theor., 46 (2013), 382001, 8 pp., arXiv: 1306.0454 | DOI | MR | Zbl

[10] Sutherland B., Beautiful models: 70 years of exactly solved quantum many-body problems, World Sci. Publ. Co., Inc., River Edge, NJ, 2004 | DOI | MR | Zbl